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Motivation

The quench protocol: |Ψ0〉 −→ |Ψ(t)〉= e−iHt |Ψ0〉

Here: Quench to the spin-1/2 XXZ chain starting from the ground state of the Ising model
[B. Wouters, J. De Nardis, MB, D. Fioretto, J.-S. Caux, arXiv:1405.0172, to be published in PRL]

Initial state:

|Ψ0〉=
1√
2

(|↑↓↑↓ . . .〉+ |↓↑↓↑ . . .〉)

Hamiltonian: (lattice size N, σα
j = Pauli matrices at lattice site j)

H =
N

∑
j=1

(
σ

x
j σ

x
j+1 + σ

y
j σ

y
j+1 + ∆(σ

z
j σ

z
j+1−1)

)
PBC’s: σα

N+1 = σα
1 , α = x ,y ,z; anisotropy parameter ∆ = ch(η)≥ 1

Objects of interest: Time evolution of observables [in particular for large t , in the limit N→ ∞]

〈Ψ(t)|O|Ψ(t)〉= 〈Ψ0|eiHtOe−iHt |Ψ0〉= ∑
λ,λ′
〈Ψ0|λ〉〈λ′|Ψ0〉ei(ωλ−ωλ′ )t 〈λ|O|λ′〉

→ Three ingredients: 1) Matrix elements 〈λ|O|λ′〉, 2) Energies ωλ, 3) Overlaps 〈Ψ0|λ〉
Problem: double sum over the Hilbert space ∑λ,λ′
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Motivation

Quench action approach

Problem: double sum over the Hilbert space (overlap coefficients Sλ =− ln〈λ|Ψ0〉):

〈Ψ(t)|O |Ψ(t)〉= ∑
λ,λ′

e−S∗
λ
−Sλ′ ei(ωλ−ωλ′ )t 〈λ|O|λ′〉

Solution: Quench Action approach → talk by J.-S. Caux (this morning)

– Restriction to a certain class of operators
(so-called “weak operators” in the thermodynamic limit)

– Applying a saddle-point approximation by minimizing the “quench action”

– Result: Expectation values (not only) for long times after the quench. Here: t → ∞

But first(!) TD limit N→ ∞ with magnetization fixed to zero, denoted by limth:

lim
t→∞

limth 〈Ψ(t)|O |Ψ(t)〉= 〈ρsp|O |ρsp〉 .

– Generalized TBA equations for the saddle point state:

0 =
δSQA[ρ]

δρn

∣∣∣∣
ρ=ρsp

with SQA[ρ] = 2S[ρ]−SYY [ρ]
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The XXZ model

ABA for the XXZ spin chain
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The XXZ model

Algebraic Bethe ansatz for the spin-1/2 XXZ chain

– Yang-Baxter algebra (2×2 monodromy matrix T (λ); λ, µ spectral parameter):

Ř(λ−µ) [T (λ)⊗T (µ)] = [T (µ)⊗T (λ)] Ř(λ−µ)

with R-matrix of the 6-vertex model

Ř(λ) =
1

sh(λ + η)


sh(λ + η) 0 0 0

0 sh(η) sh(λ) 0
0 sh(λ) sh(η) 0
0 0 0 sh(λ + η)


– Monodromy matrix (product in auxiliary space of N Lax operators):

T (λ) =
N

∏
n=1

Ln(λ) = L1(λ) . . .LN(λ) =:

(
A(λ) B(λ)

C(λ) D(λ)

)
.

with Lax operators on lattice sites n = 1, . . . ,N (2×2 matrix in auxiliary space)

Ln(λ) =
1

sh(λ + η/2)

(
sh
(
λ + η

2 σz
n
)

sh(η)σ−n

sh(η)σ
+
n sh

(
λ− η

2 σz
n
) )

with Pauli matrices σz
n,σ
±
n = 1

2 (σx
n± iσy

n) acting on lattice site n
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The XXZ model

Algebraic Bethe ansatz for the spin-1/2 XXZ chain

– Transfer matrices t(λ) = tra
[
T (λ)

]
= A(λ)+D(λ) build a commutative family: [t(λ), t(µ)] = 0

– Conserved charges of the XXZ spin chain:

Qm+1 =
∂m

∂λm ln[t(λ)]

∣∣∣∣
λ=η/2

where H = 2sh(η)Q2

– Bethe states |{λj}M
j=1〉= ∏

M
j=1 B(λj ) |↑〉⊗N (λj arbitrary = “off-shell”)

Eigenstates of the transfer matrix with eigenvalue

τ(λ) =
M

∏
k=1

sh(λ−λk −η)

sh(λ−λk )
+

[
sh(λ−η/2)

sh(λ + η/2)

]N M

∏
k=1

sh(λ−λk + η)

sh(λ−λk )

if the parameters λj , j = 1, . . . ,M, fulfill the Bethe equations (“on-shell”)[
sh(λj + η/2)

sh(λj −η/2)

]N

=−
M

∏
k=1

sh(λj −λk + η)

sh(λj −λk −η)
, j = 1, . . . ,M
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The XXZ model

Norm formula

– Norm of an on-shell Bethe state (Gaudin matrix G):

‖
∣∣{λj}M

j=1
〉
‖=

√
〈{λj}M

j=1|{λj}M
j=1〉 ,

〈{λj}M
j=1|{λj}M

j=1〉= shM (η)
M

∏
j,k=1
j 6=k

sh(λj −λk + η)

sh(λj −λk )
detM (G) ,

Gjk = δjk

(
NKη/2(λj )−

M

∑
l=1

Kη(λj −λl )

)
+ Kη(λj −λk ) ,

where Kη(λ) = sh(2η)/[sh(λ + η)sh(λ−η)]
[first suggested by Gaudin, McCoy, Wu (1981), then rigorously proven by Korepin (1982)]

– Eigenstates of the magnetization Sz = ∑
N
n=1 σz

n/2 with eigenvalue N/2−M
Sector of fixed magnetization Sz = N/2−M; Bethe states with fixed number M of
spectral parameters; Here: M = N/2

– Bethe state parity invariant if the set of spectral parameters fulfills {λj}M
j=1 = {−λj}M

j=1
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Overlap of Néel with XXZ Bethe states

Overlap of Néel with XXZ Bethe states
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Overlap of Néel with XXZ Bethe states

Overlap formula – Main result

Overlap of the (zero-momentum) Néel state with XXZ on-shell Bethe states
[MB, J. De Nardis, B. Wouters, J.-S. Caux, arXiv:1401.2877]

〈Ψ0|{±λj}
N/4
j=1 〉

‖|{λj}
N/4
j=1 〉‖

=
√

2

[
N/4

∏
j=1

√
th(λj + η/2) th(λj −η/2)

2sh(2λj )

]
detN/4(G(1))√
detN/2(G(0))

where N/2 even and

G(σ)
jk = δjk

(
NKη/2(λj )−

N/4

∑
l=1

K (σ)
η (λj ,λl )

)
+ K (σ)

η (λj ,λk ) , j,k = 1, . . . ,N/4

K (σ)
η (λ,µ) = Kη(λ−µ) + σKη(λ + µ) , Kη(λ) =

sh(2η)

sh(λ + η)sh(λ−η)

Remarks:

Bethe roots complex numbers (string solutions)

Bethe states are parity invariant: {λj}
N/2
j=1 = {−λj}

N/2
j=1 ≡ {±λj}

N/4
j=1 (overlaps with

non-parity-invariant Bethe states vanish [MB, De Nardis, Wouters, Caux, arXiv:1403.7469])

N/2 odd can be treated similarly

In the Quench Action approach only thermodynamic leading behavior needed
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Overlap of Néel with XXZ Bethe states

Overlap formula – Sketch of the proof (Part I)

First step: Getting a determinant formula [Tsuchiya (1998), Pozsgay, Kozlowski (2012)]

Main ideas:

Consider a 6-vertex model with reflecting ends (reflection equation needed)

Define partition function that (after a simple transformation) turns into the overlap of a
Bethe state with a certain boundary state (= product state of local two-site states)

Result (̃λj arbitrary(!) complex numbers, sx ,y = sh(x + y), M = N/2):

〈Ψ0|{̃λj}M
j=1〉=

√
2

 M

∏
j=1

s
λ̃j ,+η/2

s
2̃λj ,0

sM
λ̃j ,−η/2

sM
λ̃j ,+η/2

[ M

∏
j>k=1

s
λ̃j +λ̃k ,η

s
λ̃j +λ̃k ,0

]
detM (1 + U)

Ujk =
s

2̃λk ,η
s

2̃λk ,0

s
λ̃j +λ̃k ,0

s
λ̃j−λ̃k ,η

 M

∏
l=1
l 6=k

s
λ̃k +λ̃l ,0

s
λ̃k−λ̃l ,0

[ M

∏
l=1

s
λ̃k−λ̃l ,−η

s
λ̃k +λ̃l ,+η

](
s

λ̃k ,+η/2

s
λ̃k ,−η/2

)N

Remarks:

expression inconvenient to perform the thermodynamic limit

singularities in the prefactor + zeroes of the determinant for parity-invariant states

But: expression valid for off-shell Bethe states

Idea: perform the limit to parity-invariant states (not necessarily on-shell Bethe states)
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Overlap of Néel with XXZ Bethe states

Overlap formula – Sketch of the proof (Part II)

Reducing the determinant (off-shell formula):

Set λ̃j = λj + εj (j = 1, . . . ,N/4) and λ̃j =−λj−N/4 + εj−N/4 (j = N/4 + 1, . . . ,N/2)
λj (j = 1, . . . ,N/4) still arbitrary(!)
Main ingredients of the proof:

εj → 0, j = 1, . . . ,N/4

pseudo parity invariance of the set {̃λj}
N/2
j=1 = {λj + εj}

N/4
j=1 ∪{−λj + εj}

N/4
j=1

Bethe equations are less important (only at the very end)

Simple determinant manipulations and expanding everything carefully in small εj :

detN/2[1 + U] =

detN/2



[
ε1D1 0

0 1

][
ε2e12 0

0 0

][
ε3e13 0

0 0

]
. . .[

ε1e21 0
0 0

][
ε2D2 0

0 1

][
ε3e23 0

0 0

]
[

ε1e31 0
0 0

][
ε2e32 0

0 0

][
ε3D3 0

0 1

]
...

. . .


=

[
N/4

∏
j=k

εk

]
detN/4


D1 e12 e13 . . .
e21 D2 e23
e31 e32 D3

...
. . .


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Overlap of Néel with XXZ Bethe states

Overlap formula – Sketch of the proof (Part II)

Dk = Ns0,ηKη/2(λk )−
N/4

∑
l=1
l 6=k

s0,ηK (1)
η (λk ,λl ) +

s2λk ,+η

s2λk ,0
Ak +

s2λk ,−η

s2λk ,0
Āk

ejk = K (1)
η (λj ,λk ) +Ak

(
s2λj ,+ηs0,η

sλj +λk ,0sλj−λk ,+η

−
s2λj ,−ηs0,η

sλj−λk ,0sλj +λk ,−η

)

+Ak Āj
s2λj ,−ηs0,η

sλj−λk ,0sλj +λk ,−η

− Āj

(
s2λj ,−ηs0,η

sλj−λk ,0sλj +λk ,−η

+
s2λj ,−ηs0,η

sλj +λk ,0sλj−λk ,−η

)

Ak = 1 +ak , Āk = 1 +a−1
k , ak = a(λk ) =

 N/4

∏
l=1
σ=±

sλk−σλl ,−η

sλk−σλl ,+η

(sλk ,+η/2

sλk ,−η/2

)N

After further determinant manipulations,... Off-shell overlap formula:

〈Ψ0|{±λj}
N/4
j=1 〉= 〈Ψ0|{λj + εj}

N/4
j=1 ∪{−λj + εj}

N/4
j=1 〉

∣∣∣
{εj→0}N/4

j=1

= γ detN/4(G(1))
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Overlap of Néel with XXZ Bethe states

Overlap formula – Sketch of the proof (Part II)
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Overlap of Néel with XXZ Bethe states

On-shell overlap formula

After inserting Bethe equations (Ak = 0), etc... dividing by the norm, finally...

〈Ψ0|{±λj}
N/4
j=1 〉

‖|{±λj}
N/4
j=1 〉‖

=
√

2

[
N/4

∏
j=1

√
th(λj + η/2) th(λj −η/2)

2sh(2λj )

]
detN/4(G(1))√
detN/2(G(0))

Thermodynamic limit:

Ratio of determinants

(
detN/4(G(1))√

detN/2(G(0))
=

√
detN/4(G(+1))

detN/4(G(−1))

)
subleading

Leading part in the TD limit

2Sλ =−2 ln(〈Ψ0|λ〉)∼
N/4

∑
j=1

ln

[
4sh2(2λj )

th(λj + η/2) th(λj −η/2)

]
→N

∞

∑
n=1

∫
π/2

−π/2
gn(λ)ρn(λ)dλ

directly translates into the “driving terms” of the GTBA equations

String hypothesis: |λ〉 → |{ρn}∞
n=1〉,

1
N ∑

N/4
j=1 (. . .)→ ∑

∞
n=1

∫ π/2
0 (. . .)ρn(λ)dλ
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Overlap of Néel with XXZ Bethe states

Bethe and GTBA equations

Bethe equations in the TD limit [Takahashi (1999)]:

ρn(λ) [1 + ηn(λ)] = s ∗ [ηn−1ρn−1 + ηn+1ρn+1] (λ) , n ≥ 1

ηn = ρn,h/ρn, n ≥ 1, η0(λ) = 1 and ρ0(λ) = δ(λ); (f ∗g)(λ) =
∫ π/2
−π/2 f (λ−µ)g(µ)dµ

Kernel: s(λ) = 1
2π ∑k∈Z

e−2ikλ

ch(kη)

Saddle point state via

0 =
δSQA[{ρn}]

δρn

∣∣∣∣
{ρn}={ρn}sp

with SQA[{ρn}] = 2S[{ρn}]−
1
2

SYY [{ρn}]

Yang-Yang entropy

SYY [{ρn}]
N

=
∞

∑
n=1

∫
π/2

−π/2

(
ρn(λ) ln[1 + ηn(λ)] + ρn,h(λ) ln[1 + η

−1
n (λ)]

)
dλ

This + TDL of overlap coefficient⇒ Partially decoupled form of the GTBA equations:

ln[ηn(λ)] = (−1)n log

[
ϑ2

4(λ)

ϑ2
1(λ)

]
+ log

[
ϑ2

2(λ)

ϑ2
3(λ)

]
+s∗

[
ln(1+ηn−1)+ ln(1+ηn+1)

]
(λ) ,

⇒ Solving this gives the steady state |{ρn}∞
n=1〉
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Overlap of Néel with XXZ Bethe states

Bethe equations in the TDL and GTBA equations

Bethe equations:

ρn(λ) [1 + ηn(λ)] = s ∗ [ηn−1ρn−1 + ηn+1ρn+1] (λ) , n ≥ 1

GTBA equations:

ln[ηn(λ)] = (−1)n ln

[
ϑ2

4(λ)

ϑ2
1(λ)

]
+ ln

[
ϑ2

2(λ)

ϑ2
3(λ)

]
+ s ∗

[
ln(1 + ηn−1) + ln(1 + ηn+1)

]
(λ) ,

⇒ Solving this gives the steady state described by {ρn}∞
n=1

Limit to XXX (∆ = 1):

ln[ηn(λ)] = (−1)n+1 ln

[
th2
(

πλ

2

)]
+ s ∗

[
ln(1 + ηn−1) + ln(1 + ηn+1)

]
(λ) ,
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Analytical solution

Analytical solution of the GTBA equations
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Analytical solution

Y-system

Program:

– Mapping GTBA Eqs to well-known functional equations: Y- and T-system
⇒ Explicit expressions for all ηn

– Combining with an explicit expression for ρ1,h (independent of any quench)
⇒ Bethe Eqs can be solved analytically⇒ Explicit expressions for all ρn≥1

Y-system: [Takahashi; Klümper, Pearce (1992); Suzuki (1999)]

yn(x + η/2)yn(x−η/2) = [1 + yn−1(x)][1 + yn+1(x)] , n ≥ 1 , y0(x) = 0

Fixing the analyticity properties of the y -functions in the physical strip (π-periodicity in imagi-
nary direction)

PS = {x ∈ C| −η/2 < Re(x) < η/2 , −π/2 < Im(x)≤ π/2}

⇒ Y-system is equivalent to non-linear integral equations (NLIEs)

ln[yn(x)] = dn(x) + s ∗ [ln(Yn−1) + ln(Yn+1)](x) , n ≥ 1

– Kernel function s as before

– Driving terms dn determined by the analytical behavior of yn inside PS
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Analytical solution

Y-system

– GTBA Eqs are NLIEs of the form of the Y-system

– Driving terms come from the following analytical behavior:

ηn(λ)∼ sh2(2λ) , for small λ and n odd ,

ηn(λ)∼ coth2(λ) , for small λ and n even ,

and there are no further roots or poles for all λ ∈ PS\{0}

– Fourier transforms of the logarithmic derivatives:

FT [ln′(sh2(2λ))](k) =−4πi sh(ηk)(1 + (−1)k ) ,

FT [ln′(coth2(λ))](k) = 4πi sh(ηk)(1− (−1)k )

– Dividing by ch(ηk), taking inverse Fourier transform, integrating over x yields the
driving terms of the GTBA Eqs

⇒ Solution of the GTBA Eqs is given by solution
of the Y-system
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Analytical solution

T-system and explicit expressions for ηn

– Rewriting the y’s in terms of T’s:

yn(x) = Tn−1(x)Tn+1(x)/fn(x) , n ≥ 1

– Y-System⇔ T-System [Klümper, Pearce (1992); Suzuki (1999)]

Tn(x−η/2)Tn(x + η/2) = Tn−1(x)Tn+1(x) + fn(x) , n ≥ 1 , T0(x) = 1

– Writing T1(x) = T (1)
1 (x) + T (2)

1 (x) and defining a(x) = T (1)
1 (x)/T (1)

2 (x)

⇒ y1 is completely determined by auxiliary function a:

y1(x) = a(x + η/2) +a−1(x−η/2) +a(x + η/2)a−1(x−η/2)

– y0(x) = 0 and y1(x) = . . ., plus Y-system (recursion relation)⇒ all yn ’s via a

– Correct analytical behavior (for all yn) achieved by

a(λ) =
sh(λ + η)

sh(λ−η)

sh(2λ−η)

sh(2λ + η)
First function:

η1(λ) =
sh2(2λ) [ch(η) + 2ch(3η)−3ch(2λ)]

2sh(λ−η/2)sh(λ + η/2)sh(2λ + 2η)sh(2λ−2η)

Michael Brockmann (UvA) Néel-to-XXZ quench Dijon, September 2014 17



Analytical solution

T-system and explicit expressions for ηn

– Rewriting the y’s in terms of T’s:

yn(x) = Tn−1(x)Tn+1(x)/fn(x) , n ≥ 1

– Y-System⇔ T-System [Klümper, Pearce (1992); Suzuki (1999)]

Tn(x−η/2)Tn(x + η/2) = Tn−1(x)Tn+1(x) + fn(x) , n ≥ 1 , T0(x) = 1

– Writing T1(x) = T (1)
1 (x) + T (2)

1 (x) and defining a(x) = T (1)
1 (x)/T (1)

2 (x)

⇒ y1 is completely determined by auxiliary function a:

y1(x) = a(x + η/2) +a−1(x−η/2) +a(x + η/2)a−1(x−η/2)

– y0(x) = 0 and y1(x) = . . ., plus Y-system (recursion relation)⇒ all yn ’s via a

– Correct analytical behavior (for all yn) achieved by

a(λ) =
sh(λ + η)

sh(λ−η)

sh(2λ−η)

sh(2λ + η)

First function:

η1(λ) =
sh2(2λ) [ch(η) + 2ch(3η)−3ch(2λ)]

2sh(λ−η/2)sh(λ + η/2)sh(2λ + 2η)sh(2λ−2η)

Michael Brockmann (UvA) Néel-to-XXZ quench Dijon, September 2014 17



Analytical solution

T-system and explicit expressions for ηn

– Rewriting the y’s in terms of T’s:

yn(x) = Tn−1(x)Tn+1(x)/fn(x) , n ≥ 1

– Y-System⇔ T-System [Klümper, Pearce (1992); Suzuki (1999)]

Tn(x−η/2)Tn(x + η/2) = Tn−1(x)Tn+1(x) + fn(x) , n ≥ 1 , T0(x) = 1

– Writing T1(x) = T (1)
1 (x) + T (2)

1 (x) and defining a(x) = T (1)
1 (x)/T (1)

2 (x)

⇒ y1 is completely determined by auxiliary function a:

y1(x) = a(x + η/2) +a−1(x−η/2) +a(x + η/2)a−1(x−η/2)

– y0(x) = 0 and y1(x) = . . ., plus Y-system (recursion relation)⇒ all yn ’s via a

– Correct analytical behavior (for all yn) achieved by

a(λ) =
sh(λ + η)

sh(λ−η)

sh(2λ−η)

sh(2λ + η)
First function:

η1(λ) =
sh2(2λ) [ch(η) + 2ch(3η)−3ch(2λ)]

2sh(λ−η/2)sh(λ + η/2)sh(2λ + 2η)sh(2λ−2η)

Michael Brockmann (UvA) Néel-to-XXZ quench Dijon, September 2014 17



Analytical solution

Analytical solution for ρ1,h

Expectation values of the conserved charges on the Néel state [Essler, Fagotti (2013)]

limth
〈Ψ0|Qm+1 |Ψ0〉

N
=−∆

2
∂m−1

∂xm−1

 1−∆2

ch
(√

1−∆2x
)
−∆2

∣∣∣∣∣∣
x=0

... and on a Bethe state: (e.g. the steady state)

limth〈λ|
Qm+1

N
|λ〉=

∞

∑
n=1

∫
π/2

−π/2
ρn(λ)

∂m

∂λm ln

[
sh(λ + n η/2)

sh(λ−n η/2)

]
dλ , m ≥ 0

To see this, note that an n-string with string center λn
α contributes a factor

sh[λ−λn
α−

η

2 (n+1)]

sh[λ−λn
α+ η

2 (n−1)]

Combining with the Bethe equations, eventually leads to

ρ
sp
1,h(λ) = a1(λ)

(
1− ch2(η)

a2
1(λ)sh2(2λ) + ch2(η)

)
, a1(λ) =

sh(η)

ch(η)− ch(2λ)

Alternative: Use “generating function” for the Néel state [Essler, Fagotti (2013)]

ΩΨ0 (λ) =− sh(2η)

ch(2η) + 1−2ch(2λ)
, ρ

Ψ0
1,h(λ) = a1(λ) +

1
2π

[
ΩΨ0

(
λ + η

2

)
+ ΩΨ0

(
λ− η

2

)]
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Analytical solution

Explicit expressions for ρn

– Bethe equations (as functional equations):

ρn+1,h(λ) = ρn,t (λ + η/2) + ρn,t (λ−η/2)−ρn−1,h(λ) , n ≥ 1 , ρ0,h(λ)≡ 0

where ρn,t (λ) = ρn,h(λ)
(
1 + η−1

n (λ)
)

– ρn(λ) = ρn,h(λ)/ηn(λ) for n ≥ 1⇒ all ρn explicitly

For example:

ρ1(λ) =
sh3(η)sh(2λ + 2η)sh(2λ + 2η)

πf (λ− η

2 )f (λ + η

2 )g(λ)

ρ2(λ) =
8sh2(λ)sh3(η)ch(η)[3sh2(λ) + sh2(η)][ch(6η)− ch(4λ)]

πf (λ)g(λ + η

2 )g(λ− η

2 )h(λ)
...

where f (λ) = ch2(η)− ch(2λ), g(λ) = ch(η) + 2ch(3η)−3ch(2λ), and

h(λ) = 2ch(4λ) + 2ch2(2η)[2 + ch(2η)]− ch(2λ)[3 + 2ch(2η) + 3ch(4η)] .

Michael Brockmann (UvA) Néel-to-XXZ quench Dijon, September 2014 19



Analytical solution

Explicit expressions for ρn

– Bethe equations (as functional equations):

ρn+1,h(λ) = ρn,t (λ + η/2) + ρn,t (λ−η/2)−ρn−1,h(λ) , n ≥ 1 , ρ0,h(λ)≡ 0

where ρn,t (λ) = ρn,h(λ)
(
1 + η−1

n (λ)
)

– ρn(λ) = ρn,h(λ)/ηn(λ) for n ≥ 1⇒ all ρn explicitly

For example:

ρ1(λ) =
sh3(η)sh(2λ + 2η)sh(2λ + 2η)

πf (λ− η

2 )f (λ + η

2 )g(λ)

ρ2(λ) =
8sh2(λ)sh3(η)ch(η)[3sh2(λ) + sh2(η)][ch(6η)− ch(4λ)]

πf (λ)g(λ + η

2 )g(λ− η

2 )h(λ)
...

where f (λ) = ch2(η)− ch(2λ), g(λ) = ch(η) + 2ch(3η)−3ch(2λ), and

h(λ) = 2ch(4λ) + 2ch2(2η)[2 + ch(2η)]− ch(2λ)[3 + 2ch(2η) + 3ch(4η)] .

Michael Brockmann (UvA) Néel-to-XXZ quench Dijon, September 2014 19



Analytical solution

Remarks about the interpretation of the auxiliary function a

– Function a can be interpreted as auxiliary function corresponding to a (spin-1/2)
quantum transfer matrix

– Using standard contour C, which encircles the only pole of 1/(1 +a(ω)) at ω = iπ/2,
one can compute G by explicitly performing the contour integral.

– Nontrivial relation between G, a and generating function ΩΨ0 [Essler, Fagotti (2013)]
fulfilled

– Unfortunately, this explicit G function does not give the correct values of short-range
correlation functions (due to the presence of higher nontrivial driving terms, dn≥2 6= 0,
in the GTBA equations)
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