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Motivation

The quench protocol: |Wg) — |W(t)) = e M| Wy)

Here: Quench to the spin-1/2 XXZ chain starting from the ground state of the Ising model
[B. Wouters, J. De Nardis, MB, D. Fioretto, J.-S. Caux, arXiv:1405.0172, to be published in PRL]

Initial state:
1
[Wo) = —= (I )+ 414t ..))
Hamiltonian: (lattice size N, c]‘?‘ = Pauli matrices at lattice site j)
H=Y (0f0f+1 +06/0) 4+ A(o7 07, + —1))
J=1

PBC's: o, = Of, &= x,y,Zz; anisotropy parameter A = ch(n) > 1
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H=Y (0f0f+1 +06/0) 4+ A(o7 07, + —1))
J=1

PBC's: o, = Of, &= x,y,Zz; anisotropy parameter A = ch(n) > 1

Objects of interest: Time evolution of observables [in particular for large t, in the limit N — oo]

(W(8)|0]W(1)) = (Wole™Oe ™ |Wo) = Y (Wo|A) (| Wo) e/~ ) (A OIV)
AN

— Three ingredients: 1) Matrix elements (A|O|)\’), 2) Energies @, 3) Overlaps (Wo|\)
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Problem: double sum over the Hilbert space Y 5/
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Motivation

Quench action approach

Problem: double sum over the Hilbert space (overlap coefficients S, = —In (A|Wq)):

(WD) 0w() =Y e S eaiglopn)
AN
Solution: Quench Action approach — talk by J.-S. Caux (this morning)

— Restriction to a certain class of operators
(so-called “weak operators” in the thermodynamic limit)

— Applying a saddle-point approximation by minimizing the “quench action”
— Result: Expectation values (not only) for long times after the quench. Here: t — o
But first(!) TD limit N — o with magnetization fixed to zero, denoted by limy:
Jim timn (W(0)| OW(0)) = (p|0[pP)
—y00

— Generalized TBA equations for the saddle point state:

0= M with  Sgalp] = 2S[p] — Syv|[p]

3pn |p=pe
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ABA for the XXZ spin chain



The XXZ model

Algebraic Bethe ansatz for the spin-1/2 XXZ chain

— Yang-Baxter algebra (2 x 2 monodromy matrix T(A); A, u spectral parameter):

RO =) [T @ T(w)] = [T(u) @ TA] AR —p)

with R-matrix of the 6-vertex model

sh(A+n) 0 0 0
Ay = 0 sh(n) sh(}) 0
" sh(A+n) 0 sh(A) sh(n) 0

0 0 0  sh(A+m)

— Monodromy matrix (product in auxiliary space of N Lax operators):

A A(L) B(R)

=Ly(A)...Ly(A) =: .
W= B0 =00 ey ( c0) 00

with Lax operators on lattice sites n=1,..., N (2 x 2 matrix in auxiliary space)

L) = 1 ( sh(A+3o%) sh(n)o;, )

sh(A+mn/2) sh(n)os  sh(A—1o2)
with Pauli matrices 6%, 65 = J (o} £ic}) acting on lattice site n
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The XXZ model

Algebraic Bethe ansatz for the spin-1/2 XXZ chain

— Transfer matrices t(A) =tra[ T(A)] = A(L)+ D(A) build a commutative family: [t(A), t(u)] =0
— Conserved charges of the XXZ spin chain:

am
Om+1 = W In[t(?&)]

A=n/2
where H =2sh(1) Q>

— Bethe states [{};}M,) =T, B(y) [1)*N (4, arbitrary = “off-shell’)

Eigenstates of the transfer matrix with eigenvalue

M osh(h—t—m) | [sh(A—m/2) 1" M sh(h— Ak +m)
O=IT"0a 50" e 1 e

if the parameters A;, j = 1,..., M, fulfill the Bethe equations (“on-shell”)

sh(A;+n/2) } sh(Aj — Ak +m) ,
Sl L Vi e Sl B, SN 74 =1,....M
[sh(h, n/2) I:] sh(hy—M—m)”
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— Norm of an on-shell Bethe state (Gaudin matrix G):

A | =/ AL A

B M sh(h —Ak+m)
(AL L) = ShM(ﬂ)LLL W

j#k

M
Gk = djk (NKn/z(M) =) Ka(d— 7»/)) +Kn(h —2k),
1=1

dety(G),

where Ky (A) = sh(2n)/[sh(A+1n)sh(A—n)]
[first suggested by Gaudin, McCoy, Wu (1981), then rigorously proven by Korepin (1982)]



The XXZ model

Norm formula

— Norm of an on-shell Bethe state (Gaudin matrix G):

A N = /AL L)
M Sh()»j*)\,k+1”|)

(sl =i T1 5562

j#k

M
Gik = Sk (NKn/2(7“i) =) Ka(hi— 7»/)) + Kn (& — k),
1=1

dety(G),

where Ky (L) = sh(2n)/[sh(A+m)sh(A—n)]
[first suggested by Gaudin, McCoy, Wu (1981), then rigorously proven by Korepin (1982)]

— Eigenstates of the magnetization S? = Y, 6Z /2 with eigenvalue N/2 — M
Sector of fixed magnetization S = N/2 — M; Bethe states with fixed number M of
spectral parameters; Here: M = N/2

— Bethe state parity invariant if the set of spectral parameters fuffills {kj}j’v’:1 = {—h,}j"i1

Michael Brockmann (UvA) Néel-to-XXZ quench Dijon, September 2014



Overlap of Néel with XXZ Bethe states

Overlap of Néel with XXZ Bethe states
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Overlap of Néel with XXZ Bethe states

Overlap formula — Main result

o Overlap of the (zero-momentum) Néel state with XXZ on-shell Bethe states
[MB, J. De Nardis, B. Wouters, J.-S. Caux, arXiv:1401.2877]

(Wo{+A }N/4> _ /s {N/“ \/th(Xj—i—n/Z)th(?»j—n/Z)} dety(G())

A 1 2sh(24) \/dety2(G®)

j=1
where N/2 even and

N/4
Gy = & (NKn/z(x,-)lZ Ké‘”(x,».,x/)) +KO0 M), fk=1,...,N/4
=1

KOs = K ok Ka(8) = o S

Remarks:
o Bethe roots complex numbers (string solutions)
o Bethe states are parity invariant: {7&,-}/’.\’:/12 ={-N\ }11\1/12 = {ik,}/ 1 (overlaps with
non-parity-invariant Bethe states vanish [MB, De Nardis, Wouters, Caux, arXiv:1403.7469])
o N/2 odd can be treated similarly

o In the Quench Action approach only thermodynamic leading behavior needed
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Overlap of Néel with XXZ Bethe states

Overlap formula — Sketch of the proof (Part I)

First step: Getting a determinant formula [Tsuchiya (1998), Pozsgay, Kozlowski (2012)]
Main ideas:
o Consider a 6-vertex model with reflecting ends (reflection equation needed)

o Define partition function that (after a simple transformation) turns into the overlap of a
Bethe state with a certain boundary state (= product state of local two-site states)

Result (7»,' arbitrary(!) complex numbers, sy, = sh(x+y), M= N/2):

M

M S S M S 5

~ AAm/2 A,-m/2 At

(Wol (R} L) = V2 | [] 222 =2 Ln e f“]detM(1+U)
J=1 2,0 A+n/2 +

N
M - .
Skar?w,O |:H sxk*x/ﬁ’ﬂ :| (Skk7+n/2>

Si»ﬂrik,osiﬁik-ﬂ ;;L S)Xk A0 PEE PR s;»kﬁﬂ/2

Sk Z2h.0

M=

U =

¥
=
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Overlap of Néel with XXZ Bethe states

Overlap formula — Sketch of the proof (Part I)

First step: Getting a determinant formula [Tsuchiya (1998), Pozsgay, Kozlowski (2012)]
Main ideas:
o Consider a 6-vertex model with reflecting ends (reflection equation needed)

o Define partition function that (after a simple transformation) turns into the overlap of a
Bethe state with a certain boundary state (= product state of local two-site states)

Result (7»,' arbitrary(!) complex numbers, sy, = sh(x+y), M= N/2):

M
M S S M S =
~ AAn/2 A, — A+,
(Wol () = VB ] etz iz Ln Jrthen ]detM(HU)
=1 %20 S e | UPk=1 S0
S S~ M s M s s s N
U — 2heM ~ 2,0 M+M,0 M—M,—M A, tm/2
K= e = s - I—[s~ > 1Is~ = s
AjAAi,0 A =AM ;;L Me—A,0 | L=1 "he+A4m Me,—m/2

Remarks:

expression inconvenient to perform the thermodynamic limit

But: expression valid for off-shell Bethe states

Qo
o singularities in the prefactor + zeroes of the determinant for parity-invariant states
o
Qo

Idea: perform the limit to parity-invariant states (not necessarily on-shell Bethe states)
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Overlap of Néel with XXZ Bethe states

Overlap formula — Sketch of the proof (Part Il)

Reducing the determinant (off-shell formula):
o Sethj=Aj+g (=1,...,N/4) and & = —A _n/a+€ nja (i =N/4+1,
A (j=1,...,N/4) still arbitrary(!)
o Main ingredients of the proof:
0g—0,j=1,...,N/4

o pseudo parity invariance of the set {Xj}/’v\’:/f ={N +ej}N/4 iy

= U{=N et
o Bethe equations are less important (only at the very end)

....N/2)

Michael Brockmann (UvA) Néel-to-XXZ quench Dijon, September 2014



Overlap of Néel with XXZ Bethe states

Overlap formula — Sketch of the proof (Part Il)

Reducing the determinant (off-shell formula):

o Sethj=Aj+g (=1,...,N/4) and & = A n/a+€ n/a (i =N/4+1,...,N/2)

A (j=1,...,N/4) still arbitrary(!)
o Main ingredients of the proof:
0g—0j=1,.. ,N/4
o pseudo parity invariance of the set {Xj};\’:/f ={N +8,}}V:/14 u{-% +£j}f’:/14
o Bethe equations are less important (only at the very end)

Simple determinant manipulations and expanding everything carefully in small €;:

detN/2[1 + U] =

e1D1 0 e 0 egzez3 0
0 1 0 0 0o o0 |
|:£19210}{82020:|{836230} N4 eD1 9D12 213.-.
21 2 €23
dety/z 00 o1 ° 0 = L,Hsk} detn/a| ey esr Ds
g1e31 0 €re32 0 e3D3 0 =k .
0 O 0 0 0o 1
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Overlap of Néel with XXZ Bethe states

Overlap formula — Sketch of the proof (Part Il)

N/4
S0, 41 S2h,—1 &
Dy = Nso Ky j2(Ak) — Z onKn ) (e, ) + 32; - Ak + — 190
k 5 k
;e
S2),;,41 50, S2),;,—n S0,
ejk:KT?)(?»j,?»k)—&-Qlk il il - il bl
SN0 050 =he AN SN =D, 0 A+, —

S2),—nSom

, n S2),—m S0
s?»,-—?»ko S}\,j+}\,k7—‘l’] skj+7»k,os7»j—lk.—n

= S2);,—m 50, 5
+ mk%¢ Ty
s?»,—lk,oskj+hk,—n

) N/4
A =140k, =140, ax

Sk, —m/2
After further determinant manipulations,... Off-shell overlap formula:
N/4 N/4 N
Vol {}78) = (ol - U=k e e = vdetya(6)
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Overlap of Néel with XXZ Bethe states

Overlap formula — Sketch of the proof (Part Il)

N/4
1 S2hy,+ S2h,—M 5
Dy = Nso.n Ko /2(n) — Y ok (i, M)+~ g 2R 0L,
=1 S22, S22,
I#k
1 S2), 4150 S2);,-m S0,
ejk = KTE )(7\.1',7\./()+ A daall — il
SN0 M AN S A, 0N+, -1

— So)\;.—n S0, — So)..—n S0, So). —1 S0,
+ A, j,—M 20T — 9 < j,—M 0N + j,— M 20N
n

)=, 05h+ 0, Sh— M0+ M- Sh+,08h — Ak, -1

_ N/4 g s N
A =1+ ag, Qlk=1+a;17 ak = a(hk) = H b O ( M’-H]/z)

l:1:t Sh—oh,+m Sk, —m/2

o=
After further determinant manipulations,... Off-shell overlap formula:

= YdetN/4(G(1))

N/4
j=1

(Wol{A) ) = (wol -+ &} U -y +e )|
g—0}
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After inserting Bethe equations (2, = 0), etc... dividing by the norm, finally...

(Wol (=AY \/Eﬁ_/f \/th(x,+n/z)th(x,_n/z)] dety/4(G()

[EE= ] = 2sh(2h) \/detu2(G)



Overlap of Néel with XXZ Bethe states

On-shell overlap formula

After inserting Bethe equations (2 = 0), etc... dividing by the norm, finally...

<\Ilo|{ﬂt7~/},N/14>\@[Aﬁ1 wh(xjm/z)m(x,n/z)} dety4(G)
IHEM ) i 2sh(2%) dety,(G)

Thermodynamic limit:

dety/a( G<‘>) dety/4(G(H)
\/dety;2(G) dety/4 (GE1)

o Leading part in the TD limit

o Ratio of determinants ( ) subleading

) N/4 4sh?(2)) /e
25, = —2In({WoA)) N]; In |:th(}\,j+n/2)th(}¥j -n/2) } Z /

directly translates into the “driving terms” of the GTBA equations

o String hypothesis: |A) — [{pn}o_,), 1NZ}-V:/“( )Y 1jn/2( 2)pa(M)dA
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Overlap of Néel with XXZ Bethe states

Bethe and GTBA equations

o Bethe equations in the TD limit [Takahashi (1999)]:

Pn(M)[1+Mn(A)] = s*Mn—1pn—1+Mnr1Pnra](X),  n>1

Mn = Pnn/Pn, 1> 1,Mo(R) =1 and po(2) = 8(1); (f+g)(A) = ff,/jz f( = 1) g(u)

—2ik\
Kernel: s(A) = 21—“ Yrez 7;](,(”)

©

o Saddle point state via
8S 1
o= 2Saullpn]] with - Sal{pn}] =2[(pa}] ~ 5 Syv (Pl
Pn Hpo}={pn}e

o Yang-Yang entropy

S © /2

SRl _ 3 1™ (pnh) nlt-+m1a0] + o (W) 145" () o

n=1+7-1/2

©

This + TDL of overlap coefficient = Partially decoupled form of the GTBA equations:

() 03()
ﬂ%‘(x)} log {ﬂgm

In[na(A)] = (—1)"log [

Michael Brockmann (UvA) Néel-to-XXZ quench Dijon, September 2014
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Overlap of Néel with XXZ Bethe states

Bethe equations in the TDL and GTBA equations

Bethe equations:

Pr(M) [1 +Mn(M)] = s Mn—1pn—1 +Nnt1pnt1] (),  n>1
GTBA equations:

ﬁi(xq o [ﬂé(k)

Infna(A)] = (=1)"in Ls%(x) %)

} + s [In(1+Mp—1) +In(1 +Mnp1) | (1),

= Solving this gives the steady state described by {p,}r;
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Overlap of Néel with XXZ Bethe states

Bethe equations in the TDL and GTBA equations

Bethe equations:

Pn(M)[1 +Mn(AM)] = s*Mn—1Pn—1 +Nns1pPnr1](A),  n>1
GTBA equations:

s (9] = (1) | S| +im | SE3 | s i1 -4101) (1 10)] ).

= Solving this gives the steady state described by {p,}r;

Limit to XXX (A = 1):

(0] = (=137 10 ()] 5 [m(1-+0-0) 411 0 )] 1),
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Analytical solution

Analytical solution of the GTBA equations
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Program:

— Mapping GTBA Egs to well-known functional equations: Y- and T-system
= Explicit expressions for all m,

— Combining with an explicit expression for p1 , (independent of any quench)
= Bethe Eqs can be solved analytically = Explicit expressions for all py>1



Analvtical solution

Y-system

Program:

— Mapping GTBA Egs to well-known functional equations: Y- and T-system
= Explicit expressions for all

— Combining with an explicit expression for p1 » (independent of any quench)
= Bethe Eqs can be solved analytically = Explicit expressions for all py>1

Y-system: [Takahashi; Klimper, Pearce (1992); Suzuki (1999)]

yn(x+m/2)yn(x =m/2) = [1 + 1 ([T +yp1 ()], n=1, y(x)=0

Fixing the analyticity properties of the y-functions in the physical strip (7-periodicity in imagi-
nary direction)

PS={xeC| —n/2<Re(x) <n/2, —n/2 <Im(x) < m/2}
= Y-system is equivalent to non-linear integral equations (NLIEs)
In[yn(x)] = dn(x) + s*[In(Yn—1) +In(Yns1)](x), n>1
— Kernel function s as before

— Driving terms d,, determined by the analytical behavior of y, inside PS
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— GTBA Egs are NLIEs of the form of the Y-system



Analvtical solution

Y-system

GTBA Egs are NLIEs of the form of the Y-system
Driving terms come from the following analytical behavior:

Nn(A) ~ sh?(21), for small A and n odd,

Nn(A) ~ coth®(A), for small A and n even,
and there are no further roots or poles for all A € PS\{0}

Fourier transforms of the logarithmic derivatives:

FT[In'(sh?(21))](k) = —4mish(nk)(1 + (—1)),
FT[In(coth®(X))](k) = 4mish(nk)(1 — (—1)¥)

Dividing by ch(nk), taking inverse Fourier transform, integrating over x yields the
driving terms of the GTBA Egs

= Solution of the GTBA Egs is given by solution
of the Y-system
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Analvtical solution

Y-system

GTBA Egs are NLIEs of the form of the Y-system
Driving terms come from the following analytical behavior:

Nn(A) ~ sh?(2L), for small A and n odd,
Nn(A) ~coth?(X), for small A and n even,
and there are no further roots or poles for all A € PS\{0}

Fourier transforms of the logarithmic derivatives:

FT[In'(sh?(21))](k) = —4mish(nk)(1 + (—1)),
FT[In(coth?(X))](k) = 4mish(nk)(1 — (—1)¥)

Dividing by ch(nk), taking inverse Fourier transform, integrating over x yields the
driving terms of the GTBA Egs

= Solution of the GTBA Egs is given by solution
of the Y-system with this analyticity properties
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Analvtical solution

T-system and explicit expressions for M,

Rewriting the y’s in terms of T’s:

Yn(x) = To1 () Tag1 (X) /fa(x), n =1

Y-System < T-System [Klimper, Pearce (1992); Suzuki (1999)]

To(x =m/2)Ta(x+M/2) = To—1(X) Top1 (x) + fa(x), n>1, To(x) =1

— Writing 1 (x) = T\ (x) + 7 (x) and defining a(x) = 7" (x)/ 75" (x)

= y1 is completely determined by auxiliary function a:
yi(x) = a(x+n/2)+a"" (x—n/2) +a(x+n/2)a " (x —n/2)

— Yo(x) =0and y1(x) = ..., plus Y-system (recursion relation) =
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Analvtical solution

T-system and explicit expressions for M,

Rewriting the y’s in terms of T’s:

Yn(x) = To1 () Tag1 (X) /fa(x), n =1

Y-System < T-System [Klimper, Pearce (1992); Suzuki (1999)]

To(x =m/2)Ta(x+M/2) = To—1(X) Top1 (x) + fa(x), n>1, To(x) =1
— Writing T4 (x) = T1(1)(X) + T1(2)(x) and defining a(x) = T1(1)(x)/T2(1)(x)
= y1 is completely determined by auxiliary function a:

yi(x) =a(x+n/2)+a”" (x=n/2) +a(x+n/2)a"" (x-1/2)

yo(x) =0and y1(x) =..., plus Y-system (recursion relation) =

Correct analytical behavior (for all y,) achieved by

_sh(A+m) sh(2L—n)

) = Sh=m) sh(@h+m)
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Analvtical solution

T-system and explicit expressions for M,

Rewriting the y’s in terms of T’s:

Yn(x) = To1 () Tag1 (X) /fa(x), n =1

Y-System < T-System [Klimper, Pearce (1992); Suzuki (1999)]

To(x =m/2)Ta(x+M/2) = To—1(X) Top1 (x) + fa(x), n>1, To(x) =1
— Writing T4 (x) = T1(1)(X) + T1(2)(x) and defining a(x) = T1(1)(x)/T2(1)(x)
= y1 is completely determined by auxiliary function a:

yi(x) =a(x+n/2)+a”" (x=n/2) +a(x+n/2)a"" (x-1/2)

yo(x) =0and y1(x) =..., plus Y-system (recursion relation) =

Correct analytical behavior (for all y,) achieved by

_sh(A+m) sh(2L—n)
~ sh(A—mn) sh(2A+1)

a(})
First function:
sh?(21) [ch(n) +2ch(3n) — 3ch(21)]

M) = S —n/2)sh(h+n/2)sh(2h +21)sh(2h —21)
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Analvtical solution

Analytical solution for p1 p

Expectation values of the conserved charges on the Néel state [Essler, Fagotti (2013)]

. {Wo| Qmt1|Wo) A M1 1- A2
limip = S
N 2 0x ch (@x) — A2 .
xX=
.. and on a Bethe state: (e.g. the steady state)
m+1 sh(A+nm/2) o
limin (A 2 Ly = Z/ )axm {7sh(7»—nn/2) dh, m>0

To see this, note that an n-string with string center A{, contributes a factor
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Analvtical solution

Analytical solution for p1 p

Expectation values of the conserved charges on the Néel state [Essler, Fagotti (2013)]

X <\|»'0| Qm+1 |\|Jo> A a’”‘1 1— Az
limgn e S
N 2 ox ch (@x) — A2 .
xX=
... and on a Bethe state: (e.g. the steady state)
m+1 sh(A+nm/2) o
limin (A 2 Ly = Z/ )axm {7sh(7»—nn/2) dh, m>0

sh{A—A2— 13 (n4+1)]

To see this, note that an n-string with string center A{, contributes a factor S+ T(n=1]

Combining with the Bethe equations, eventually leads to

s B Chz(ﬂ) _ sh(n)
PR = ai(2) (1 T 2(N)sh?(2)) +ch2(n)> A= Gy @y

Alternative: Use “generating function” for the Néel state [Essler, Fagotti (2013)]
sh(2n)
ch(2n)+1—2ch(2}1)’
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— Bethe equations (as functional equations):
Prt1,n(A) = Pnt(A+M/2) +pnt(A—N/2) —pn-1.a(A), n=1,  pos(r)=0
where pn (L) = pan(r) (141, (1))

= Pa(A) = pra()/Ma(A) forn>1 =



Analvtical solution

Explicit expressions for p,,

— Bethe equations (as functional equations):
Prt1.a(A) = Pnt(A+M/2) +pnt(A—M/2) = pn-1,a(A), n=1,  pon(r)=0
where pn(A) = pan(A) (14M5" (1))

 n(A) = a2 (3 for > 1 = [al py oy

For example:
() = sh®(n) sh(2\ + 2n) sh(2A + 2n)
P T 0 D Da(h)
0a(h) = 8sh?(A)sh®(n)ch(n)[3sh?(1) +sh?(n)][ch(6n) — ch(42)]

nf(M)g(h+3)g(h— 3)h(R)

where (L) =ch?(n)—ch(2)), g(A)=ch(n)+2ch(3n)—3ch(2X), and

h(L) = 2ch(41) +2ch?(2n)[2 + ch(2n)] — ch(24)[3 + 2¢h(2n) + 3ch(4n)] .
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Analvtical solution

Remarks about the interpretation of the auxiliary function a

— Function a can be interpreted as auxiliary function corresponding to a (spin-1/2)
quantum transfer matrix

— Using standard contour €, which encircles the only pole of 1/(1 + a(®)) at ® = in/2,
one can compute G by explicitly performing the contour integral.

— Nontrivial relation between G, a and generating function Qy, [Essler, Fagotti (2013)]
fulfilled

— Unfortunately, this explicit G function does not give the correct values of short-range
correlation functions (due to the presence of higher nontrivial driving terms, dp>2 # 0,
in the GTBA equations)
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Summary
o Overlaps of Néel with XXZ Bethe states (A arbitrary)
o Quench action approach = GTBA equations (for the steady state)

o Analytical solution of the GTBA equations
= Connection to Y- and T-systems + Explicit expressions for p’s



Conclusion

Summary and outlook

Summary
o Overlaps of Néel with XXZ Bethe states (A arbitrary)
@ Quench action approach = GTBA equations (for the steady state)

o Analytical solution of the GTBA equations
= Connection to Y- and T-systems + Explicit expressions for p’s

Outlook
o Correlation functions using the analytical approach for solving the GTBA equations
o Applications to the Loschmidt echo [Pozsgay, arXiv:1308.3087]
o Overlaps and QAA also for different initial states (e.g. dimer, g-dimer,...)

©

Complete understanding of the structure of GTBA equations («++ explicit solutions for
different initial states)

@ Quenches from A’ # o to A (XXZ) — determinant expression for the overlaps needed!
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Conclusion

Summary and outlook

Summary
o Overlaps of Néel with XXZ Bethe states (A arbitrary)
@ Quench action approach = GTBA equations (for the steady state)

o Analytical solution of the GTBA equations
= Connection to Y- and T-systems + Explicit expressions for p’s

Outlook
o Correlation functions using the analytical approach for solving the GTBA equations
o Applications to the Loschmidt echo [Pozsgay, arXiv:1308.3087]
o Overlaps and QAA also for different initial states (e.g. dimer, g-dimer,...)

o Complete understanding of the structure of GTBA equations (< explicit solutions for
different initial states)

@ Quenches from A’ # o to A (XXZ) — determinant expression for the overlaps needed!

Thank you for your attention!
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