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The Asymmetric Simple exclusion Process
The ASEP is a stochastic system of particles hopping on a one
dimensional lattice under the constraint that a site of the lattice
can be occupied by at most one particle
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Since its introduction in the ’60 as a biophysical model for protein
synthesis of RNA, ASEP has found several very different
applications as a (toy) model for traffic flow, formation of shocks,
etc... It is fair to say that it plays a fundamental role in our
understanding of non-equilibrium processes.
Many approaches has been developed and exact results derived
since its introduction and its rich combinatorial structure has been
explored.
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Multispecies ASEP general framework

We consider a periodic lattice Z/LZ on which we have for
1 ≤ α ≤ N, mα particles of species α,

∑N
α=1 mα = L

(conventionally we can think at the particles of type α = 1 as
empty sites)
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The rates pα,β for a local exchange α↔ β depends on the species
involved

α β
pα,β
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Multispecies ASEP general framework

The master equation for the time evolution of the probability of a
configuration w is

d
dt Pw (t) =

∑
w ′|w ′→w

Mw ,w ′Pw (t)−
∑

w ′|w→w ′
Mw ′,w Pw (t)

d
dt P(t) =MP(t) M =

L∑
i=1

pα,βM(i)
α,β

In this talk I will focus on the stationary probability

MP = 0

for a system on a ring.
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Multispecies ASEP: baxterized form of R-matrix
In order for M to be an integrable “Hamiltonian” we need a
Ř-matrix which satisfies the YBE, the inversion relations and

Ř(x , x) = 1, d
dx Ř(x , y)|x=y=0 ∝

∑
1≤α 6=β,N

pα,βMα,β

We search it of the “baxterized” form

Ř(x , y) = 1 +
∑

1≤α 6=β≤N
gα,β(x , y)Mα,β

If we ask that ∀α 6= β, pα,β 6= 0 then the only solution (up to
permutation of the species) happens for

pα,β =

{
p for α < β
q for α > β

in which case the matrices M(i) satisfy (up to rescaling) the Hecke
commutation relations.
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Ř-matrix which satisfies the YBE, the inversion relations and
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Multispecies TASEP: R-matrix
In this talk we want to focus to the Totally Asymmetric case

pα>β = 0

In this case the “baxterized” solutions of the YBE are more
interesting, they are parametrized by 2N − 2 parameters
τ = {τ1, . . . , τN−1}, ν = {ν2, . . . , νN}

Ř(x , y) = 1 +
∑

1≤α<β≤N
gα,β(x , y)Mα,β

gα,β(x , y) =
(y − x)(τα + νβ)

(ταy − 1)(νβx + 1)

and the rates are given therefore by

pα<β = τα + νβ
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Positivity results/conjectures [Lam-Williams, L.C. . . ]
Conjectures
One can normalize the unique solution of Mψ = 0 (unnormalized
probabilties) in such a way that
1- the components ψw are polynomials of τ, ν with positive integer
coefficients;
2 For να = 0 (or τα = 0 ), and restricting to the sector with 1
particle per species (w is just a permutation) the polynomials ψw
are Schubert positive.

Arita and Mallick have provided a Matrix Product solution for ψw
in the case where ∀α, να = 0, which implies point 1.
Open question
Construct a Matrix Product for the general case να 6= 0.
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Spectral parameters
Define as usual Ri ,j(x , y) = Pi ,j Ři ,j(x , y) and construct the transfer
matrix

T (t|z) = traRa,1(t, z1)Ra,2(t, z2) . . .Ra,L(t, zL)

M = T−1(0|0)
dT (t|0)

dt |t=0

On each sector of particle content m the matrix T (t|z) is
stochastic (and irreducible) therefore we shall study the unique
solution of

T (t|z)ψ(z) = ψ(z)

and one recover the M-TASEP “unnormalized” stationary
probability

ψw = ψw (0).
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Exchange equations

The eigenvector ψ(z) is a polynomial in the spectral parameters z
and in the rates τ, ν. Moreover, since

Ři (zi , zi+1)T (t|z)Ři (zi+1, zi ) = si ◦ T (t|z)

where si acts on function by the exchange zi ↔ zi+1, one can
normalize ψ(z) in such a way that it satisfies the following
exchange equations

Ři (zi , zi+1)ψ(z) = si ◦ ψ(z)

We shall discuss the minimal degree solution of such equations.
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Exchange equations in components

Once expanded in components, the exchange equations read as
follows

ψ...,wi=wi+1,...(z) = si ◦ ψ...,wi=wi+1,...(z)

ψ...,wi>wi+1,...(z) = π̂i (wi ,wi+1)ψ...,wi+1<wi ,...(z)

and
π̂i (α, β) =

(ταzi+1 − 1)(νβzi + 1)

τα + νβ

1− si
zi − zi+1

This system of equation is cyclic: given ψw (z) for a word w one
can obtain ψw ′(z) for any other w ′ by acting with the π̂ operators.
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Affine 0-Hecke algebra with spectral parameters

The operators π̂i (α, β) satisfy a spectral parameter deformation
(not baxterization!) of the 0-Hecke algebra (recovered for tα and
να independent of α)

π̂2
i (α, β) = −π̂i (α, β)

π̂i (β, γ)π̂i+1(α, γ)π̂i (α, β) = π̂i+1(α, β)π̂i (α, γ)π̂i+1(β, γ)

[π̂i (α, β), π̂j(γ, δ)] = 0 |i − j | > 2
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Some consequences of the exchange equations

• If w∗ is such that w∗i ≤ w∗i+1 (and rotated) then

ψw∗(z) =
∏
α<β

(τα+νβ)mαmβ(β−α−1)
L∏

i=1

 ∏
α<w∗i

(1− ταzi )
∏
β>w∗i

(1 + νβzi )


• In particular the solution of the exchange equation of minimal
degree in the sector m has degree

degzi ψ
(m)(z) = #{α|mα 6= 0} − 1

• Other components can be explicitely computed.
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Recursions

• Setting zL = τ−1
min(m) or zL = −ν−1

max(m) kills all the components
for which wL 6= min(m) or wL 6= max(m) and the other satisfy two
remarkable recurrence relation

ψw1,...,wL−1,wL=min(m)(z)|zL=τ
−1
min(m)

= K−(z \ zL)ψw1,...,wL−1(z \ zL)

ψw1,...,wL−1,wL=max(m)(z)|zL=−ν−1
max(m)

= K+(z \ zL)ψw1,...,wL−1(z \ zL)

where the factors K±(z \ zL) can be easily computed by inspection
of ψw∗(z).
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Simplest non trivial component: the building block

Let w (α) such that for i ≤ j ≤ L−mα

wi 6= α and wi ≤ wj

For example
w (6) = 2 2 3 5 5 5 7 9 9 6 6 6

Then
ψ
(m)

w (α)(z) = (Trivial Factors)× φ(m)
α (z1, . . . , zL−mα)

where φ(m)
α (z1, . . . , zL−mα) is a symmetric polynomial in

z1, . . . , zL−mα of degree 1 in each variable separately.

I These polynomials turn out to be the building blocks of more
general components

I Thanks to the recursion relations they can be computed
explicitly
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φ(m)
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∮
τ−1

dw
2πi

∏L−mα
i=1 (w − zi )∏

β≤α(τβw − 1)mβ
∏
β≥α(νβw + 1)mβ
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Factorization of components with least ascending

The probability of the words w̃ which have minimal number of
ascent

for example w̃ = 9 9 7 6 6 6 5 5 5 3 2 2

is given by a product of φ(m)
α polynomials

Conjecture
Calling zα = {zi |wi = α}

ψw̃ = (Trivial Normalization)
∏
α

φ(m)
α (z \ zα)

The “Trivial Normalization” is z independent.
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Factorization of components with least ascending:
corollaries

Corollary I
The formula for the least ascending component implies and general-
izes a formula conjectured by Lam and Williams which expresses ψw̃
in the case m = {. . . , 0, 1, 1 . . . , 1, 0 . . . } and να = 0 as a product
of Schubert Polynomials of τ

ψL,L−1,...,1 = S1,2,3...,LS1,3,4...,L,2S1,4,5,...,L,2,3S1,L,2,3...,L−1

Corollary II
Suppose that we condition w to split as w (k)w (k−1) . . .w (2)w (1),
with w (j) of fixed length Lj (possibly 0) and

w (s+1)
i > w (s)

j

then the events w (j) are independent.
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Normalization

In order to compute actual probabilities we need the normalization

Z(m)(z) =
∑

w |m(w)=m
ψw (z)

Thanks to the exchange relations this polynomial turns out to be
symmetric in z and satisfies the recursion relation induced by ψ(z)
itself.
Unfortunately in the general case we are not able to provide a
formula for Z(m)(z).
What we can solve is the case να = ν for α ≤ γ, τα = τ for α ≥ γ
for some γ.
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Factorized sum rule

If for some γ we have

να = ν for α ≤ γ
τα = τ for α ≥ γ

(and mα > 0 for min(m) ≤ α ≤ max(m)), by projecting
“downward” from max(m) and “upward” from min(m) until γ

Z(m)(z) =
γ−1∏

α=min(m)

φ(m
↑
α)

α (z)
γ+1∏

α=max(m)

φ(m
↓
α)

α (z)

where
m↓α = Πα−1

α,α+1,...m, m↑α = Πα+1
...,α−1,αm
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Some open questions

I Correlation functions, currents, etc.
I Do the components ψw (z) have a combinatorial expression?
I What is the “right” context for the 0-Hecke algebra with

spectra parameters?
The operators π̂(α, β) can be used for example to define a
family of deformed Grothendick polynomials which depends
on the parameters τ, ν. Do they have any geometric meaning?

I Deal with others Weyl groups.
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