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Abstract

We derive expressions for the form factors of the quantum transfer matrix of the
spin-1

2 XXZ chain which allow us to take the infinite Trotter number limit. This solves
the longstanding problem of describing analytically the amplitudes in the leading
asymptotics of the finite temperature correlation functions of the model.
In the zero-temperature limit, we recover the predictions of conformal field theory
(CFT) and Luttinger liquid (LL) approach concerning the large-distance behaviour
of the correlators in the massless phase. As a first result for the massive regime,
we obtain Baxter’s spontaneous magnetization.

Introduction

The Hamiltonian of the XXZ chain in a longitudinal magnetic field h is given by
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where periodic boundary conditions are implied. J > 0 fixes the energy scale
and ∆ = ch(η) ∈ R is the anisotropy parameter. We investigate the large-distance
asymptotics of longitudinal and transversal correlation functions in the thermody-
namic limit L→∞ at finite temperature T ,
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? with 〈O〉 = Tr(e−βHO)/Tr(e−βH) .

Quantum transfer matrix and Bethe ansatz

We study finite temperature properties of the system by means of the quantum
transfer matrix (QTM) t(λ) which is defined as the column-to-column transfer ma-
trix of a certain inhomogeneous six-vertex model.
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The monodromy matrix T (λ) is a
2× 2 matrix with matrix elements
A(λ); B(λ); C(λ); D(λ) ∈ End(C⊗N

2 )
The QTM t(λ) = Tr T (λ) = A(λ) +D(λ)
can be diagonalized using the
algebraic Bethe ansatz (ABA).
Eigenvectors have the form
|Ψn〉 = B(λM) . . .B(λ1)|0〉 where

the Bethe roots {λj}M
j=1 have to satisfy the Bethe ansatz equations (BAE).

The QTM t(0) has a unique eigenvalue Λ0(0) with largest modulus which, together
with the corresponding eigenvector |Ψ0〉 determines the state of thermal equilib-
rium completely for L→∞. Correlation functions can be calculated via
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To every solution of the BAE, one associates an auxiliary function an(λ). In the
Trotter limit N →∞, it is determined by the non-linear integral equation

ln an(λ) = −(κ + N
2 −M)2η − β e(λ)−

∫
Cn

dµ
2πi

K (λ− µ) ln(1 + an(µ)) ,

where β = 2J sh(η)/T and κ = h/(2ηT ). The contour Cn encircles all Bethe roots.
The kernel K (λ) and the bare energy e(λ) are defined by

K (λ) = K0(λ) , Kα(λ) = q−α cth(λ− η)− qα cth(λ+ η) , e(λ) = cth(λ)− cth(λ+ η) ,

with q = eη. The eigenvalue can be expressed as

ln Λn(λ) = (κ + N
2 −M)η −
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e(µ− λ) ln(1 + an(µ)) .

Form factor expansion

For the longitudinal two-point functions we start with a generating function, which
is closely related to the twisted QTM t(λ|α) = qαA(λ) + q−αD(λ). Setting S(m) =
1
2

∑m
j=1 σ

z
j , the generating function is defined as 〈q2αS(m)〉, where α ∈ C. This

correlation function generates the longitudinal two-point functions via
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where Dm is the difference operator defined by Dmf (m) = f (m)− f (m−1). It follows
from the general formula that

〈q2αS(m)〉N =
〈Ψ0|tm(0|α)|Ψ0〉
〈Ψ0|Ψ0〉Λm

0 (0)

is the finite Trotter number approximant of the generating function. Inserting a
complete set of eigenstates {|Ψα

n〉} of the twisted QTM (with eigenvalues Λn(λ|α)
and auxiliary functions an(λ|α)), we obtain the form factor expansion
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Similarly, the form factor expansion for the transversal correlators reads
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•Thermal correlation functions can be expanded into series of form factors of the
QTM. Instead of form factors of local operators, those of ABA operators appear.
•For T > 0 only a few terms contribute to the form factor expansion and

correlators decay exponentially
•Correlation lengths ξn have been studied extensively [Klümper et al. ’01], so far

little was known about the amplitudes An

Amplitudes for longitudinal correlators

Our main result is the following analytic expression for the amplitudes in the Trotter
limit:
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The determinants have to be understood as Fredholm determinants, e.g.
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and similarly for the other determinants. The measures are given by
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Furthermore, our result involves solutions of linear integral equations,
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Amplitudes for transversal correlators

The expressions for the amplitudes pertaining to the transversal correlation func-
tions have a remarkably similar structure,
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where G
±
s (ξ) (for s = ±) is defined by linear integral equations of the same type as

in the longitudinal case.
Conjecture: Structure is universal and persists for more general form factors.

Zero-temperature limit for ∆ > 1

Massless regime (hc1 < h < hc2)
In this regime, infinitely many terms con-
tribute to the form factor series, which im-
plies that the individual amplitudes must
vanish as T → 0. Therefore, the low-T anal-
ysis requires the following steps:

•Calculation of amplitudes and correlation lengths for small but finite T
•Summation of the form factor series with the formula of [Kitanine et al. ’11]
Result:
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with kF and v0 being the Fermi momentum and sound velocity. The critical expo-
nent Z is defined by linear integral equations.
•We have confirmed the predictions of CFT and LL theory concerning the

large-distance behaviour of the correlation functions by an exact calculation
•The non-universal amplitudes A−+

0,0 and Azz
0,1 are known explicitly and can be

easily computed numerically (cf. figures below)

In the vicinity of the lower phase boundary (h↘ hc1) we obtain the explicit result
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where A is Glaisher’s constant and k is given by k = ϑ2
2(0,q))/ϑ2

3(0,q).
This divergence for h↘ hc1 indicates the transition to longer-ranged order.
Massive regime (0 < h < hc1)
As a first result, we obtained the spontaneous magnetization
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z
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th(ηn)4 ,

in agreement with Baxter’s formula for the spontaneous staggered polarization.
Open problem: Obtain the next-leading term of the large-distance asymptotics!
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