The periodic $s\ell(2|1)$ alternating spin chain and Logarithmic Conformal Field Theory at c=0

AM Gainutdinov

DESY and Fachbereich Mathematik, Universität Hamburg, Germany

arXiv 1409 0167

with N. Read, H. Saleur, and R. Vasseur

Dijon, RAQIS, 2 September 2014

"non-unitarity" phenomena

"Non-unitarity" phenomena in 2d statistical models such as percolation where one is interested in non-local type of observables – hulls of percolation clusters

"non-unitarity" phenomena

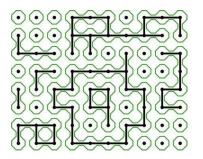
- "Non-unitarity" phenomena in 2d statistical models such as percolation where one is interested in non-local type of observables – hulls of percolation clusters
- Non-unitary SUSY spin chains as a local and managable model periodic $\mathfrak{sl}(2|1)$ spin chains for percolation with periodic b.c.

"non-unitarity" phenomena

- "Non-unitarity" phenomena in 2d statistical models such as percolation where one is interested in non-local type of observables – hulls of percolation clusters
- Non-unitary SUSY spin chains as a local and managable model periodic $\mathfrak{sl}(2|1)$ spin chains for percolation with periodic b.c.
- Logarithmic CFT as the continuum limit and a tool to study these phenomena

2d critical percolation with periodic b.c.

Edges on a lattice are open with probability p and closed with 1-p.

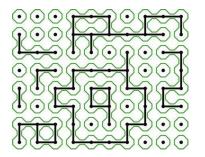


At criticality

occupied and empty edges occur with probability $p=rac{1}{2}$

2d critical percolation with periodic b.c.

Edges on a lattice are open with probability p and closed with 1-p.



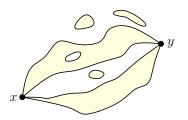
At criticality

occupied and empty edges occur with probability $p=rac{1}{2}$

— in loop formulation (there is a one to one correspondence between loops and clusters), all loop configurations are equiprobable and that the loops must all be counted with a fugacity equal to one!

Non-local observables

The multi hulls operators \mathcal{O}_k have a natural interpretation in terms of k loops joining two points



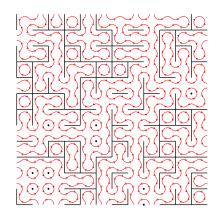
We are looking at quantities like multipoint correlators

$$\langle \mathcal{O}_k(\vec{r_1})\mathcal{O}_k(\vec{r_2})\rangle, \ldots$$

of initially **non-local** observables, for which critical exponents known:

$$h_k = \bar{h}_k = \frac{4k^2 - 1}{24}$$

Duplantier-Saleur, 1987



The idea is to consider the loops as Feynman diagrams expressing contraction of what is going to be **supergroup variables**.

■ Statistics: odd edges carry \square rep of $s\ell(2|1)$, and even ones are $\overline{\square}$ \longrightarrow the fugacity of the loops is then the number of bosonic minus the number of fermionic degrees of freedom.

- Statistics: odd edges carry \square rep of $s\ell(2|1)$, and even ones are \square \longrightarrow the fugacity of the loops is then the number of bosonic minus the number of fermionic degrees of freedom.
- The idea is that vertices of the lattice represent interactions non-positive definite Boltzmann weights 1 and $(-1)^{|c|}$.

- Statistics: odd edges carry \square rep of $s\ell(2|1)$, and even ones are \square \longrightarrow the fugacity of the loops is then the number of bosonic minus the number of fermionic degrees of freedom.
- The idea is that vertices of the lattice represent interactions non-positive definite Boltzmann weights 1 and $(-1)^{|c|}$.
- The transfer matrix then acts on the graded tensor product

$$\mathcal{H} = \square \otimes \overline{\square} \otimes \square \otimes \overline{\square} \otimes \ldots \otimes \square \otimes \overline{\square}$$

consisting of fundamental and conjugate reps of $s\ell(2|1)$.

- Statistics: odd edges carry \square rep of $s\ell(2|1)$, and even ones are \square \longrightarrow the fugacity of the loops is then the number of bosonic minus the number of fermionic degrees of freedom.
- The idea is that vertices of the lattice represent interactions non-positive definite Boltzmann weights 1 and $(-1)^{|c|}$.
- The transfer matrix then acts on the graded tensor product

$$\mathcal{H} = \square \otimes \overline{\square} \otimes \square \otimes \overline{\square} \otimes \ldots \otimes \square \otimes \overline{\square}$$

consisting of fundamental and conjugate reps of $s\ell(2|1)$.

■ The elementary nearest-neighbor interaction at (i, i + 1) corresponds to the action of a Temperley–Lieb algebra generator e_i .

The periodic Temperley–Lieb algebra $\widehat{\mathcal{TL}}_{q,N}$ is an ∞ -dim algebra generated by 1 and e_i with $1 \leq i \leq N$ (i.e. + one extra generator, e_N)

$$[e_i, e_j] = 0$$
 $(|i - j| \ge 2)$
 $e_i^2 = (q + q^{-1})e_i$
 $e_i e_{i \pm 1} e_i = e_i$

and indices i interpreted modulo \emph{N} , and set $\mathsf{q}=e^{i\pi/eta}$, with $eta\in\mathbb{R}^*$.

The periodic Temperley–Lieb algebra $\widehat{\mathcal{TL}}_{q,N}$ is an ∞ -dim algebra generated by 1 and e_i with $1 \leq i \leq N$ (i.e. + one extra generator, e_N)

$$[e_i, e_j] = 0$$
 $(|i - j| \ge 2)$
 $e_i^2 = (q + q^{-1})e_i$
 $e_i e_{i\pm 1}e_i = e_i$

and indices i interpreted modulo \emph{N} , and set ${\sf q}=e^{i\pi/eta}$, with $eta\in\mathbb{R}^*$.

• It is a quotient of the (affine) Hecke algebra of type \widehat{A}_{N-1} .

The periodic Temperley-Lieb algebra $\widehat{\mathcal{TL}}_{q,N}$ is an ∞ -dim algebra generated by $\mathbf{1}$ and e_i with $1 \leq i \leq N$ (i.e. + one extra generator, e_N)

$$[e_i, e_j] = 0$$
 $(|i - j| \ge 2)$
 $e_i^2 = (q + q^{-1})e_i$
 $e_i e_{i+1} e_i = e_i$

and indices i interpreted modulo N, and set $\mathsf{q}=\mathsf{e}^{i\pi/eta}$, with $eta\in\mathbb{R}^*$.

• It is a quotient of the (affine) Hecke algebra of type \widehat{A}_{N-1} .

$$\widehat{\mathcal{TL}}_{\mathsf{q},\mathcal{N}}$$
 action on $\mathcal{H} = \square \otimes \overline{\square} \otimes \square \otimes \ldots \otimes \square \otimes \overline{\square}$

by projections onto the $s\ell(2|1)$ singlet $\mathbb C$ in the tensor product

$$\square \otimes \overline{\square} = \mathrm{Ad} \oplus \mathbb{C}$$

– the Heisenberg like interaction on \mathcal{H} .

The periodic Temperley–Lieb algebra $\widehat{\mathcal{TL}}_{q,N}$ is an ∞ -dim algebra generated by 1 and e_i with $1 \leq i \leq N$ (i.e. + one extra generator, e_N)

$$[e_i, e_j] = 0$$
 $(|i - j| \ge 2)$
 $e_i^2 = (q + q^{-1})e_i$
 $e_i e_{i \pm 1} e_i = e_i$

and indices i interpreted modulo \emph{N} , and set $\mathsf{q}=e^{i\pi/eta}$, with $eta\in\mathbb{R}^*$.

- It is a quotient of the (affine) Hecke algebra of type \widehat{A}_{N-1} .
 - The Hamiltonian $H = -\sum_i e_i$ of our model is just particular element of $\widehat{TL}_{q,N}$ with $q = e^{i\pi/3}$ (fugacity one)

The periodic Temperley-Lieb algebra $\widehat{\mathcal{TL}}_{q,N}$ is an ∞ -dim algebra generated by $\mathbf{1}$ and e_i with $1 \leq i \leq N$ (i.e. + one extra generator, e_N)

$$[e_i, e_j] = 0$$
 $(|i - j| \ge 2)$
 $e_i^2 = (q + q^{-1})e_i$
 $e_i e_{i+1} e_i = e_i$

and indices i interpreted modulo N, and set $\mathsf{q}=\mathsf{e}^{i\pi/\beta}$, with $\beta\in\mathbb{R}^*$.

- It is a quotient of the (affine) Hecke algebra of type \widehat{A}_{N-1} .
 - The Hamiltonian $H = -\sum_i e_i$ of our model is just particular element of $\widehat{TL}_{q,N}$ with $q = e^{i\pi/3}$ (fugacity one)
 - But the algebra has more operators excitation operators. We call this type of algebra *the dynamical symmetry of the model*

On the continuum or CFT side, we have the dynamical symmetry given by

On the continuum or CFT side, we have the dynamical symmetry given by

the Virasoro algebra

 ∞ -dim Lie algebra Vir_{eta} generated by L_n 's with $n \in \mathbb{Z}$ and satisfying

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}$$

where the central charge c parametrized as

$$c=c(eta)=1-rac{6(1-eta)^2}{eta}, \qquad eta \in \mathbb{R}^*$$

On the continuum or CFT side, we have the dynamical symmetry given by

the Virasoro algebra

 ∞ -dim Lie algebra Vir_{eta} generated by L_n 's with $n \in \mathbb{Z}$ and satisfying

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}$$

where the central charge c parametrized as

$$c = c(\beta) = 1 - \frac{6(1-\beta)^2}{\beta}, \qquad \beta \in \mathbb{R}^*$$

Fields and Virasoro representations

■ The energy-momentum tensor of CFT has L_n 's as its Fourier modes!

On the continuum or CFT side, we have the dynamical symmetry given by

the Virasoro algebra

 ∞ -dim Lie algebra Vir_{eta} generated by L_n 's with $n \in \mathbb{Z}$ and satisfying

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3-m)\delta_{m+n,0}$$

where the central charge c parametrized as

$$c = c(\beta) = 1 - \frac{6(1-\beta)^2}{\beta}, \qquad \beta \in \mathbb{R}^*$$

Fields and Virasoro representations

- The energy-momentum tensor of CFT has L_n 's as its Fourier modes!
- Quantum fields are grouped into appropriate chiral-antichiral Virasoro representations.

On the continuum or CFT side, we have the dynamical symmetry given by

the Virasoro algebra

 ∞ -dim Lie algebra Vir_{eta} generated by L_n 's with $n \in \mathbb{Z}$ and satisfying

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3-m)\delta_{m+n,0}$$

where the central charge c parametrized as

$$c = c(\beta) = 1 - \frac{6(1-\beta)^2}{\beta}, \qquad \beta \in \mathbb{R}^*$$

TL vs Vir (important part)

Lattice dynamical symmetries (e.g. Temperley–Lieb algebras with the fugacity $n=2\cos\beta$) go in the continuum limit $N\to\infty$ to CFT's dynamical symmetries, i.e., to the Virasoro algebra!

Lattice vs Continuum

• TL algebra gives a regularization of the energy-momentum tensor

$$T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$$

and its Fourier modes L_n are obtained in the continuum limit

Lattice vs Continuum

TL algebra gives a regularization of the energy-momentum tensor

$$T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$$

and its Fourier modes L_n are obtained in the continuum limit from the lattice Hamiltonian densities e_i (generators of TL algebra)

$$P(n) = \sum_{j=1}^{N-1} \exp\left(i\pi \frac{nj}{N}\right) [e_j, e_{j+1}] \xrightarrow{N \to \infty} L_n - \bar{L}_{-n}$$

In particular, the Hamiltonian $H \to L_0 + \bar{L}_0$ and the momentum $P \to L_0 - \bar{L}_0$, but we can also see the excitations operators L_n and \bar{L}_n 's!

Lattice vs Continuum

TL algebra gives a regularization of the energy-momentum tensor

$$T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$$

and its Fourier modes L_n are obtained in the continuum limit from the lattice Hamiltonian densities e_i (generators of TL algebra)

$$P(n) = \sum_{i=1}^{N-1} \exp\left(i\pi \frac{nj}{N}\right) [e_j, e_{j+1}] \xrightarrow{N \to \infty} L_n - \bar{L}_{-n}$$

In the limit $N \to \infty$ the commutators of H(n) and P(n)'s give the commutation relations of the Virasoro algebra. Koo-Saleur, 1994, G-Read-Saleur, 2011-12

■ Spectrum of *H*

- Spectrum of *H*
- Jordan cells for *H*

- Spectrum of *H*
- Jordan cells for H
- Spin chain decomposition wrt the dynamical symmetry algebra periodic TL action

- Spectrum of H
- Jordan cells for H
- Spin chain decomposition wrt the dynamical symmetry algebra periodic TL action
- Structure of (indecomposable) modules or components of the spin chain how the excitation operators H(n) and P(n) act.

- Spectrum of H
- Jordan cells for H
- Spin chain decomposition wrt the dynamical symmetry algebra periodic TL action
- Structure of (indecomposable) modules or components of the spin chain how the excitation operators H(n) and P(n) act.

Tools

- Spectrum of *H*
- Jordan cells for H
- Spin chain decomposition wrt the dynamical symmetry algebra periodic TL action
- Structure of (indecomposable) modules or components of the spin chain how the excitation operators H(n) and P(n) act.

Tools

 Representation theoretic analysis (representation theory of affine TL at roots of unity, structure of standard modules, tilting and projective modules, quasi-hereditary and cellular algebras, etc.)

- Spectrum of H
- Jordan cells for H
- Spin chain decomposition wrt the dynamical symmetry algebra periodic TL action
- Structure of (indecomposable) modules or components of the spin chain how the excitation operators H(n) and P(n) act.

Tools

- Representation theoretic analysis (representation theory of affine TL at roots of unity, structure of standard modules, tilting and projective modules, quasi-hereditary and cellular algebras, etc.)
- Integrability

■ The spin chain is self-dual as a $\widehat{TL}_{q,N}$ -module (admits symmetric non-degenerate bilinear form, with self-adjoint generators e_i 's)

■ The spin chain is self-dual as a $\widehat{TL}_{q,N}$ -module (admits symmetric non-degenerate bilinear form, with self-adjoint generators e_i 's)

■ The spin chain is self-dual as a $\mathcal{TL}_{q,N}$ -module (admits symmetric non-degenerate bilinear form, with self-adjoint generators e_i 's) and on N sites decomposes

$$\mathcal{H}_N = \bigoplus [\text{Tilting modules}] = \bigoplus_{(j,P)} n_{j,P} \times \mathcal{T}_{j,P}$$

onto a special kind of indecomposable modules

– called *tilting* modules $\mathcal{T}_{j,P}$;

■ The spin chain is self-dual as a $\mathcal{TL}_{q,N}$ -module (admits symmetric non-degenerate bilinear form, with self-adjoint generators e_i 's) and on N sites decomposes

$$\mathcal{H}_N = \bigoplus [\text{Tilting modules}] = \bigoplus_{(j,P)} n_{j,P} \times \mathcal{T}_{j,P}$$

onto a special kind of indecomposable modules – called **tilting** modules $\mathcal{T}_{j,P}$; in the sum: integer $j=0,\ldots,N/2$ (number of through-lines), and P is the twist parameter (all j-th roots of unity).

■ The spin chain is self-dual as a $\widehat{TL}_{q,N}$ -module (admits symmetric non-degenerate bilinear form, with self-adjoint generators e_i 's) and on N sites decomposes

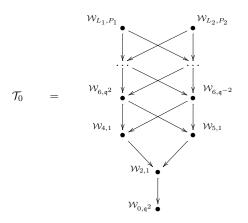
$$\mathcal{H}_N = \bigoplus [\text{Tilting modules}] = \bigoplus_{(j,P)} n_{j,P} \times \mathcal{T}_{j,P}$$

onto a special kind of indecomposable modules – called **tilting** modules $\mathcal{T}_{j,P}$; in the sum: integer $j=0,\ldots,N/2$ (number of through-lines), and P is the twist parameter (all j-th roots of unity).

■ The multiplicities $n_{j,P}$ correspond to combinations of many representations of $s\ell(2|1)$. Note: the full symmetry or the centralizer is much bigger than $s\ell(2|1)$.

The "ladder" structure of the tilting vacuum module

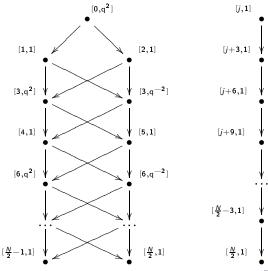
 \mathcal{T}_0 is a "glueing" of many standard modules for periodic TL



the periodic TL algebra acts following the arrows

The "ladder" structure of the standard modules

 $\mathcal{W}_{j,P}$ at $\mathsf{q}=e^{rac{i\pi}{3}}$ and [j,P] are irreducible subquotients



Periodic TL algebra is best understood diagrammatically: by **non-crossing arcs and through-lines** on a cylinder with N dots on its top and bottom

$$e_i = \left[\begin{array}{c} \\ \\ \end{array} \right] \quad \ldots \quad \left[\begin{array}{c} \\ \\ \end{array} \right]$$

Periodic TL algebra is best understood diagrammatically: by **non-crossing arcs and through-lines** on a cylinder with *N* dots on its top and bottom

$$e_i = \left| \begin{array}{c} \\ \\ \end{array} \right| \quad \ldots \quad \left| \begin{array}{c} \\ \\ \end{array} \right|$$

The periodic TL multiplication is just the stacking of the cylindric diagrams of the e_i 's and each loop is replaced by the "loop fugacity" $q + q^{-1}$.

Periodic TL algebra is best understood diagrammatically: by non-crossing arcs and through-lines on a cylinder with N dots on its top and bottom

$$e_i = \left| \begin{array}{c} \\ \\ \end{array} \right| \left| \begin{array}{c} \\ \\ \end{array} \right| \left| \begin{array}{c} \\ \\ \end{array} \right| \left| \begin{array}{c} \\ \\ \end{array} \right|$$

The periodic TL multiplication is just the stacking of the cylindric diagrams of the e_i 's and each loop is replaced by the "loop fugacity" $q + q^{-1}$.

Link or standard representations $\mathcal{W}_{j,P}$

are paramterized by the number of through-lines 2j and twist P (a point on a unit circle):

- ullet through-lines connect the bottom boundary of the cylinder with 2j sites and the top with N sites
- the rest is connected by arcs without crossing

Standard modules $\mathcal{W}_{j,P}$

periodic TL action on $\mathcal{W}_{j,P}$

■ the action of the periodic TL algebra is defined again by stacking the cylindrical diagrams;

- the action of the periodic TL algebra is defined again by stacking the cylindrical diagrams;
- whenever the link diagram thus obtained has a number of through lines less than 2j, the result is zero;

- the action of the periodic TL algebra is defined again by stacking the cylindrical diagrams;
- whenever the link diagram thus obtained has a number of through lines less than 2j, the result is zero;
- lacksquare a loop is replaced by the factor $q + q^{-1} = 1$ in our case;

Standard modules $\mathcal{W}_{i,P}$

- the action of the periodic TL algebra is defined again by stacking the cylindrical diagrams;
- whenever the link diagram thus obtained has a number of through lines less than 2j, the result is zero;
- lacksquare a loop is replaced by the factor $q + q^{-1} = 1$ in our case;
- whenever 2j through-lines wind counterclockwise/clockwise around the annulus 1 time, we unwind them at the price of a factor $P^{\pm j}$.

Standard modules $\mathcal{W}_{i,P}$

periodic TL action on $\mathcal{W}_{j,P}$

- the action of the periodic TL algebra is defined again by stacking the cylindrical diagrams;
- whenever the link diagram thus obtained has a number of through lines less than 2j, the result is zero;
- lacksquare a loop is replaced by the factor $q + q^{-1} = 1$ in our case;
- whenever 2j through-lines wind counterclockwise/clockwise around the annulus 1 time, we unwind them at the price of a factor $P^{\pm j}$.

This action gives rise to a generically irreducible module, which we denote by $W_{j,P}$ – the standard modules.

 \bullet The structure of the tilting modules in terms of irreducibles is more complicated, and depends on N

- ullet The structure of the tilting modules in terms of irreducibles is more complicated, and depends on N
- Patterns as N increases can be easily understood:

- ullet The structure of the tilting modules in terms of irreducibles is more complicated, and depends on N
- Patterns as N increases can be easily understood:
- we have a ladder of ladders (next slide)

- ullet The structure of the tilting modules in terms of irreducibles is more complicated, and depends on N
- Patterns as N increases can be easily understood:
- we have a ladder of ladders (next slide)

A consequence of the structure of the modules — appearance of Jordan blocks of **arbitrarily large size** for the Hamiltonian as *N* increases.

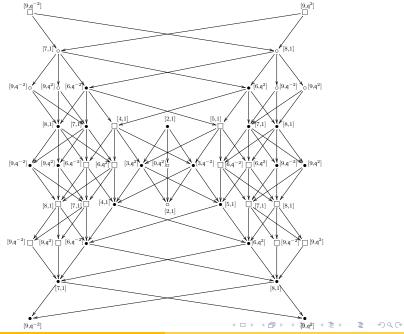
- ullet The structure of the tilting modules in terms of irreducibles is more complicated, and depends on N
- Patterns as N increases can be easily understood:
- we have a ladder of ladders (next slide)

A consequence of the structure of the modules — appearance of Jordan blocks of **arbitrarily large size** for the Hamiltonian as N increases.

high-rank Jordan blocks

For the vacuum module \mathcal{T}_0 and states in its irreducible subquotients [j,P]:

$$\text{rank of } H \geq \begin{cases} 2 \left\lceil \frac{j-2}{3} \right\rceil - 1, & j \bmod 3 = 0, \quad P = \mathsf{q}^{\pm 2}, \\ 2 \left\lceil \frac{j-2}{3} \right\rceil, & j \bmod 3 = 1 \text{ or } 2, \quad P = 1. \end{cases}$$



Many properties of the $s\ell(2|1)$ spin chain can be obtained exactly, by combining

■ the algebraic analysis (representation theory of affine TL)

$$\mathcal{H}_{N} = \bigoplus_{(j,P)} n_{j,P} \times \mathcal{T}_{j,P}$$

and each $\mathcal{T}_{j,P}$ is composed of $\mathcal{W}_{j,P}$

Many properties of the $s\ell(2|1)$ spin chain can be obtained exactly, by combining

■ the algebraic analysis (representation theory of affine TL)

$$\mathcal{H}_{N} = \bigoplus_{(j,P)} n_{j,P} \times \mathcal{T}_{j,P}$$

and each $\mathcal{T}_{j,P}$ is composed of $\mathcal{W}_{j,P}$

with the Bethe ansatz of an integrable spin-chain (twisted XXZ) where each $W_{j,P}$ also appears but as a direct summand.

The eigenvalues of the Hamiltonian $H = \sum_{i} e_{i}$ in each standard module

The eigenvalues of the Hamiltonian $H = \sum_i e_i$ in each standard module can be obtained using twisted XXZ spin chain

$$H = \frac{1}{2} \sum_{i=1}^{N} \left(\sigma_{i}^{\mathsf{x}} \sigma_{i+1}^{\mathsf{x}} + \sigma_{i}^{\mathsf{y}} \sigma_{i+1}^{\mathsf{y}} + \frac{\mathsf{q} + \mathsf{q}^{-1}}{2} \sigma_{i}^{\mathsf{z}} \sigma_{i+1}^{\mathsf{z}} \right) + \frac{\mathrm{e}^{i \phi}}{4} \sigma_{N}^{+} \sigma_{1}^{-} + \frac{\mathrm{e}^{-i \phi}}{4} \sigma_{N}^{-} \sigma_{1}^{+}$$

The eigenvalues of the Hamiltonian $H = \sum_{i} e_{i}$ in each standard module can be obtained using twisted XXZ spin chain

$$H = \frac{1}{2} \sum_{i=1}^{N} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \frac{\mathsf{q} + \mathsf{q}^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z} \right) + \frac{\mathrm{e}^{i \Phi}}{4} \sigma_{N}^{+} \sigma_{1}^{-} + \frac{\mathrm{e}^{-i \Phi}}{4} \sigma_{N}^{-} \sigma_{1}^{+}$$

and the Hamiltonian is written in the same form

$$H = \sum_{i=1}^{N} e_i$$

The eigenvalues of the Hamiltonian $H = \sum_i e_i$ in each standard module can be obtained using twisted XXZ spin chain

$$H = \frac{1}{2} \sum_{i=1}^{N} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \frac{\mathsf{q} + \mathsf{q}^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z} \right) + \frac{\mathrm{e}^{i\phi}}{4} \sigma_{N}^{+} \sigma_{1}^{-} + \frac{\mathrm{e}^{-i\phi}}{4} \sigma_{N}^{-} \sigma_{1}^{+}$$

and the Hamiltonian is written in the same form

$$H = \sum_{i=1}^{N} e_i$$

but the generators of the periodic TL are now in the XXZ representation

$$e_{i < N} = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & q^{-1} & -1 & 0 \\ 0 & -1 & q & 0 \\ 0 & 0 & 0 & 0 \end{array} \right), \qquad e_N = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & q^{-1} & -e^{i\varphi} & 0 \\ 0 & -e^{-i\varphi} & q & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

The eigenvalues of the Hamiltonian $H = \sum_{i} e_{i}$ in each standard module can be obtained using twisted XXZ spin chain

$$H = \frac{1}{2} \sum_{i=1}^{N} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \frac{\mathsf{q} + \mathsf{q}^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z} \right) + \frac{\mathrm{e}^{i \phi}}{4} \sigma_{N}^{+} \sigma_{1}^{-} + \frac{\mathrm{e}^{-i \phi}}{4} \sigma_{N}^{-} \sigma_{1}^{+}$$

and the Hamiltonian is written in the same form

$$H = \sum_{i=1}^{N} e_i$$

As a representation of periodic TL, the sector with the total spin $S_z=j$ is isomorphic to the standard module $\mathcal{W}_{[j],\mathrm{e}^{\pm i\Phi}}$, where '+' is for positive j and '–' is for negative value of j.

The eigenvalues of the Hamiltonian $H = \sum_i e_i$ in each standard module can be obtained using twisted XXZ spin chain

$$H = \frac{1}{2} \sum_{i=1}^{N} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \frac{q+q^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z} \right) + \frac{e^{i\phi}}{4} \sigma_{N}^{+} \sigma_{1}^{-} + \frac{e^{-i\phi}}{4} \sigma_{N}^{-} \sigma_{1}^{+}$$

and the Hamiltonian is written in the same form

$$H = \sum_{i=1}^{N} e_i$$

spectrum equivalence

The idea is that there is a spectrum equivalence (for the set of eigenvalues of H, up to multiplicities) between these two models

Aufgebauer-Brockmann-Nuding-Klümper, 2010

The eigenvalues of the Hamiltonian $H = \sum_i e_i$ in each standard module can be obtained using twisted XXZ spin chain

$$H = \frac{1}{2} \sum_{i=1}^{N} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \frac{\mathsf{q} + \mathsf{q}^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z} \right) + \frac{\mathrm{e}^{i\phi}}{4} \sigma_{N}^{+} \sigma_{1}^{-} + \frac{\mathrm{e}^{-i\phi}}{4} \sigma_{N}^{-} \sigma_{1}^{+}$$

and the Hamiltonian is written in the same form

$$H = \sum_{i=1}^{N} e_i$$

but

in other aspects (the action of the whole dynamical symmetry algebra and thus the structure of modules) the two models are **quite different!**

For the $N \to \infty$ limit, we are interested in the generating function $F_{j,e^{2iK}}$ of energy levels for each standard periodic TL module $\mathcal{W}_{i,e^{2iK}}$

For the $N \to \infty$ limit, we are interested in the generating function $F_{j,e^{2iK}}$ of energy levels for each standard periodic TL module $\mathcal{W}_{j,e^{2iK}}$

The generating function of the energy and momentum spectra is related to conformal spectra (for the critical Hamiltonian at $|{\bf q}|=1$) as

$$\operatorname{Tr} e^{-\beta_R(H-Ne_0)} e^{-i\beta_I P} \xrightarrow{N \to \infty} \operatorname{Tr} q^{L_0-c/24} \bar{q}^{\bar{L}_0-c/24}$$

For the $N \to \infty$ limit, we are interested in the generating function $F_{j,e^{2iK}}$ of energy levels for each standard periodic TL module $\mathcal{W}_{j,e^{2iK}}$

The generating function of the energy and momentum spectra is related to conformal spectra (for the critical Hamiltonian at $|{\bf q}|=1$) as

$$\operatorname{Tr} e^{-\beta_R (H - N e_0)} e^{-i\beta_I P} \xrightarrow{N \to \infty} \operatorname{Tr} q^{L_0 - c/24} \bar{q}^{\bar{L}_0 - c/24}$$

The scaling limit of each S_z sector and twist e^{2iK}

$$F_{j,e^{2iK}} = rac{q^{-c/24}ar{q}^{-c/24}}{P(q)P(ar{q})} \sum_{n \in \mathbb{Z}} q^{h_{n+K/\pi,-j}} ar{q}^{h_{n+K/\pi,j}}$$

and

$$P(q) = \prod_{n=1}^{\infty} (1 - q^n)$$

Pasquier-Saleur, 1990

For the $N \to \infty$ limit, we are interested in the generating function $F_{j,e^{2iK}}$ of energy levels for each standard periodic TL module $\mathcal{W}_{j,e^{2iK}}$

The generating function of the energy and momentum spectra is related to conformal spectra (for the critical Hamiltonian at $|{\bf q}|=1$) as

$$\operatorname{Tr} e^{-\beta_R(H-Ne_0)} e^{-i\beta_I P} \xrightarrow{N \to \infty} \operatorname{Tr} q^{L_0-c/24} \bar{q}^{\bar{L}_0-c/24}$$

Putting all the ingredients together

Using this information about scaling properties of $\mathcal{W}_{j,P}$ and having the explicit structure of the tilting modules for periodic TL, we obtain explicit structure of $\mathfrak{vir} \oplus \overline{\mathfrak{vir}}$ modules in the scaling limit – bulk LCFT at c=0

■ Complete description of the operator content (including the multi hulls operators) of our theory. Several important conclusions follow, among which:

- Complete description of the operator content (including the multi hulls operators) of our theory. Several important conclusions follow, among which:
- The structure of the vacuum module (below).

- Complete description of the operator content (including the multi hulls operators) of our theory. Several important conclusions follow, among which:
- The structure of the vacuum module (below).
- The identity field occurs with multiplicity one, and satisfies all the properties expected from a well-defined vacuum of a bulk field theory in particular, it is invariant under translations.

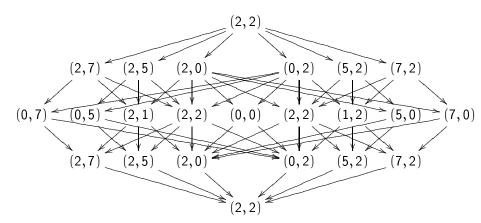
- Complete description of the operator content (including the multi hulls operators) of our theory. Several important conclusions follow, among which:
- The structure of the vacuum module (below).
- The identity field occurs with multiplicity one, and satisfies all the properties expected from a well-defined vacuum of a bulk field theory in particular, it is invariant under translations.
- There is a Jordan cell of rank 2 for the fields in (0,2) and (2,0) the stress energy tensor has a single logarithmic partner, with the logarithmic coupling b=-5.

- Complete description of the operator content (including the multi hulls operators) of our theory. Several important conclusions follow, among which:
- The structure of the vacuum module (below).
- The identity field occurs with multiplicity one, and satisfies all the properties expected from a well-defined vacuum of a bulk field theory in particular, it is invariant under translations.
- There is a Jordan cell of rank 2 for the fields in (0,2) and (2,0) the stress energy tensor has a single logarithmic partner, with the logarithmic coupling b=-5.
- There is a Jordan cell of rank 3 for the field (2,2).

- Complete description of the operator content (including the multi hulls operators) of our theory. Several important conclusions follow, among which:
- The structure of the vacuum module (below).
- The identity field occurs with multiplicity one, and satisfies all the properties expected from a well-defined vacuum of a bulk field theory in particular, it is invariant under translations.
- There is a Jordan cell of rank 2 for the fields in (0,2) and (2,0) the stress energy tensor has a single logarithmic partner, with the logarithmic coupling b=-5.
- There is a Jordan cell of rank 3 for the field (2,2).
- Jordan cells of arbitrarily high rank occur in the scaling limit for large enough conformal weights. These ranks were calculated in the paper.

Vacuum module structure for percolation model in bulk (periodic b.c)

The scaling limit of the vacuum tilting module gives the structure of the vacuum module over the chiral-antichiral Virasoro at c=0:



G-Read-Saleur-Vasseur 2014 ~

Vacuum module structure for percolation model in bulk (periodic b.c)

The structure of Hamiltonian's Jordan cells!

$$H=\left(egin{array}{cc} E_j & 1 \\ 0 & E_j \end{array}
ight) \qquad \qquad L_0=\left(egin{array}{cc} h_{1,j} & 1 \\ 0 & h_{1,j} \end{array}
ight)$$

and the Jordan cell in the vacuum module

$$L_0 = \left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right)$$

gives log's in two point functions

$$\langle T(z)T(0)\rangle = 0, \qquad \langle T(z)t(0,0)\rangle = -\frac{5}{z^4}, \qquad \langle t(z,\bar{z})t(0)\rangle = \frac{10\log|z|^2}{z^4}$$

Vasseur-G-Jacobsen-Saleur 2012

Using lattice regularizations of LCFTs – quantum spin-chains with non-diagonalizable Hamiltonian – the representation theory of lattice algebras and connection with integrable twisted XXZ models, we explored many problems of the following types:

■ Structure of indecomposable modules over $\mathfrak{vir} \oplus \overline{\mathfrak{vir}}$ in bulk (or full) LCFTs where chiral and antichiral sectors are mixed in a highly non-trivial way.

- Structure of indecomposable modules over $\mathfrak{vir} \oplus \overline{\mathfrak{vir}}$ in bulk (or full) LCFTs where chiral and antichiral sectors are mixed in a highly non-trivial way.
- Classification of fields and answers on such important questions as

- Structure of indecomposable modules over vive vive in bulk (or full) LCFTs where chiral and antichiral sectors are mixed in a highly non-trivial way.
- Classification of fields and answers on such important questions as
 - "how many h = 0 fields are there in the model?",

- Structure of indecomposable modules over vive vive in bulk (or full) LCFTs where chiral and antichiral sectors are mixed in a highly non-trivial way.
- Classification of fields and answers on such important questions as
 - "how many h = 0 fields are there in the model?",
 - "how many logarithmic partners does the stress energy tensor have?",

- Structure of indecomposable modules over vive vive in bulk (or full) LCFTs where chiral and antichiral sectors are mixed in a highly non-trivial way.
- Classification of fields and answers on such important questions as
 - "how many h = 0 fields are there in the model?",
 - "how many logarithmic partners does the stress energy tensor have?",
 - "how many logarithmic partners do the multi-hulls operators \mathcal{O}_k have and what are their two-point correlation functions?", etc.

- Structure of indecomposable modules over vive vive in bulk (or full) LCFTs where chiral and antichiral sectors are mixed in a highly non-trivial way.
- Classification of fields and answers on such important questions as
 - "how many h = 0 fields are there in the model?",
 - "how many logarithmic partners does the stress energy tensor have?",
 - "how many logarithmic partners do the multi-hulls operators \mathcal{O}_k have and what are their two-point correlation functions?", etc.
- Logarithmic couplings numbers that describe correlations functions.

Thank you!