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SUMMARY

An integrable systems of mechanical origin with a compact configuration space is called irreducible if it does not have any continuous symmetry
group and, therefore, cannot be globally reduced to a family of systems with two degrees of freedom. One of the known examples of an irreducible
system was found by A.G. Reyman and M.A. Semenov-Tian-Shansky. Today, it is the widest generalization of the classical Kowalevski case and the
Kowalevski–Yehia gyrostat.
The integrable systems with two degrees of freedom appear in an irreducible system as invariant almost symplectic submanifolds of dimension 4. They
are called critical subsystems. For two of them we present an algebraic separation of variables, i.e., two auxiliary variables satisfy the equations of the
Kowalevski type and all initial phase variables are expressed in terms of the separated ones as rational functions of simple radicals with polynomial
coefficients. One separation is integrated in elliptic functions, another is hyperelliptic.
Considering the phase space of the separated variables as a 4-dimensional Euclidean space of two coordinates and two momenta, one can derive
the polynomial equations for the Hamilton function H. In the elliptic case it is of degree 4 with respect to H.
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GENERAL SYSTEM AND ITS SUBSYSTEMS

Phase space e(3, 2)∗, equations ẋ = {x,H}, the Hamiltonian and the first integrals
[1-3]

H = ω2
1 + ω2

2 +
1
2
ω2

3 − α1 − β2,

K = (ω2
1 − ω2

2 + α1 − β2)2 + (2ω1ω2 + α2 + β1)2,

G = (ω1α1 + ω2α2 + 1
2ω3α3)2 + (ω1β1 + ω2β2 + 1

2ω3β3)2

+ω3[ω1(α2β3 − α3β2) + ω2(α3β1 − α1β3) + 1
2ω3(α1β2 − α2β1)]

−α1b2 − β2a2,

α2 = a2, β2 = b2, α·β = 0 (a > b > 0).

Critical surfaces [4,5]

ψ1(h, k , g) := [2g − (a2 + b2)h]2 − (a2 − b2)2k = 0,
ψ2(h, k , g) := Resultants

[
s2(k − 3s2 + 4hs − a2 − b2 − h2) + a2b2,

s(g + s3 − hs2)− a2b2
]

= 0

and critical subsystems

Mi = {x : Θi(x) = 0, d Θi(x) = 0} (Θi(x) = ψi(H(x),K (x),G(x)), i = 1, 2)

FIRST ALGEBRAIC SEPARATION

OnM1, having two independent partial integrals L,M , denote

Ψ = 4ms1s2 − 2`(s1 + s2) +
`2 − 1

m
, Π(s) = Ψ(s, s),

G1 =
√

s2
1 − a2, F1 =

√
− Π(s1), G2 =

√
b2 − s2

2, F2 =
√

Π(s2).

Proposition [6]. In auxiliary variables s1, s2, the equations of motion separate

ṡ1 = −
1
2

G1F1, ṡ2 =
1
2

G2F2

and the phase variables obtain the following expressions in terms of s1, s2 and the
integral constants

α1 =
1

2(s1 − s2)2
[(s1s2 − a2)Ψ− G1G2F1F2],

α2 =
1

2(s1 − s2)2
[(a2 − s1s2)F1F2 −ΨG1G2],

β1 =
1

2(s1 − s2)2
[ΨG1G2 + (s1s2 − b2)F1F2],

β2 =
1

2(s1 − s2)2
[(s1s2 − b2)Ψ− G1G2F1F2],

ω1 =
r(`− 2ms1)F2

2(s1 − s2)
, ω2 =

r(2ms2 − `)F1

2(s1 − s2)
,

α3 =
r G1

s1 − s2
, β3 =

r G2

s1 − s2
, ω3 =

G2F1 − G1F2

s1 − s2
.

SECOND ALGEBRAIC SEPARATION

OnM2, having two independent partial integrals S,T, denote

σ = τ 2 − 2p2τ + r4, χ =

√
4s2τ + σ

4s2
, κ =

√
σ,

K1 =
√

t1 + κ , K2 =
√

t2 + κ ,

L1 =
√

t1 − κ , L2 =
√

t2 − κ ,

M1 =
√

t1 + τ + r2 , M2 =
√

t2 + τ + r2 ,

N1 =
√

t1 + τ − r2 , N2 =
√

t2 + τ − r2 ,

V1 =

√
t2
1 − 4s2χ2

sτ
, V2 =

√
t2
2 − 4s2χ2

sτ
U1 = K1L1, U2 = K2L2, R = K1K2 + L1L2,
A = [(t1 + τ + r2)(t2 + τ + r2)− 2(p2 + r2)r2]τ,
B = [(t1 + τ − r2)(t2 + τ − r2) + 2(p2 − r2)r2]τ.

Proposition [7]. In auxiliary variables t1, t2, the equations of motion separate

(t1 − t2)ṫ1 =

√
1

2sτ
(t2

1 − 4s2χ2)(t2
1 − σ)[(t1 + τ )2 − r4] ,

(t1 − t2)ṫ2 =

√
1

2sτ
(t2

2 − 4s2χ2)(t2
2 − σ)[(t2 + τ )2 − r4] .

and the phase variables obtain the following expressions in terms of t1, t2 and the
integral constants

α1 = (U1 − U2)2(A− r2U1U2)(4s2τ + U1U2)− (τ + r2)sτM1N1V1M2N2V2

4r2s τ (t2
1 − t2

2 )2
,

α2 = i(U1 − U2)2(A− r2U1U2)sτV1V2 − (4s2τ + U1U2)(τ + r2)M1N1M2N2

4r2s τ (t2
1 − t2

2 )2
,

α3 =
R
2r

M1M2

t1 + t2
,

β1 = i(U1 − U2)2(B + r2U1U2)sτV1V2 − (4s2τ + U1U2)(τ − r2)M1N1M2N2

4r2s τ (t2
1 − t2

2 )2
,

β2 = −(U1 − U2)2(B + r2U1U2)(4s2τ + U1U2)− (τ − r2)sτM1N1V1M2N2V2

4r2s τ (t2
1 − t2

2 )2
,

β3 = −i
R
2r

N1N2

t1 + t2
,

ω1 = i
R

4rs
√

2

U1N1M2V2 − M1V1U2N2

t2
1 − t2

2
,

ω2 =
R

4rs
√

2

U1M1N2V2 − N1V1U2M2

t2
1 − t2

2
,

ω3 = −i
U1 − U2√

2

V1M2N2 + M1N1V2

t2
1 − t2

2
.
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