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Why to compute scalar products of Bethe states?
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Why to compute the semi-classical limit?

• Condensation of magnons in bound complexes 
of large spin above the ferromagnetic vacuum [Sutherland’95]

• Condensation of solitons in quantum 
sine-Gordon to quasi-periodic solutions 
of KdV 

[Babelon, Bernard, Smirnov’96, 
Smirnov’98 

• Condensation of Cooper pairs in 
a superconductor

[Bettelheim, Gorohovsky’11] 

•  “Heavy” gauge-invariant operators in 
N=4 SYM dual to classical strings in 
AdS5xS5

[Beisert, Minahan, Staudacher, Zarembo’03 
Kazakov, Marshakov, Minahan, Zarembo’04

• The standard determinant formulas [Gaudin, Varchenko, Isergin, Korepin, 
Slavnov] become difficult to manage in this limit. New semiclassical 
methods needed. 

Strings on AdS5 � S5

IIB superstrings propagate on the curved superspace AdS5 ⇥ S5

�⇤ ⇥ ⇥ fermi

Coset space

AdS5 ⇥ S5 ⇥ fermi =
PSU(2, 2|4)

Sp(1, 1)⇥ Sp(2)
.

Decomposition of the algebra u(2, 2|4) to sp(1, 1)⇥ sp(2)

j ⌅ psu(2, 2|4), j = h + q1 + p + q2, h ⌅ sp(1, 1)⇥ sp(2).

Algebra j = [j1, j2] respects Z4-grading h : 0, q1 : 1, p : 2, q2 : 3 [
Berkovits

Bershadsky, Hauer
Zhukov, Zwiebach

]

KITP’05, Niklas Beisert 13
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New 
determinant 
formulas for the 
scalar product

CFT representation 
in terms of a chiral 
boson

effective field 
theory for the 
semi-classical limit 

Semi-classical 
expansion (leading 
and subleading 
terms)

coarse-graining
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SU(2) spin chain: Algebraic Bethe Ansatz
where the polynomial Q✓ is defined as1

Q✓(x) =
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, . . . , ✓
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}. (2.14)

a(u) = (u+ i/2)

L (2.15)
d(u) = (u� i/2)

L (2.16)

Any Bethe state is completely characterised by its pseudo-momentum, known also under the name
of counting function [17]
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The Bethe equations (2.8), which are formulated in terms of the pseudo-momentum as

e

2ip(uj)
+ 1 = 0 (j = 1, . . . ,M), (2.18)

imply that the p(z) takes value ⇡n
j

at z = u

j

, where n
j

is an integer. Thus each solution of the Bethe
equations is characterised by a set of integers n = {n
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u ! "u, " = 1/L (2.19)

u = {u
1

, . . . , u

L1} (2.20)
v = {v

1

, . . . , v

L2} (2.21)
w = {w

1

, . . . , w

L3} (2.22)

a(u) = (u+

1

2

i")

L

, d(u) = (u� 1

2

i")

L (2.23)

3 Determinant formulas for the inner product

In order to expand the states |vi with given a set of rapidities in the basis of eigenvectors |ui of the
monodromy matrix,

|vi =
X

u on shell

hu|v i |ui, (3.1)

we need to compute the scalar product hv|u i of an off-shell and an on-shell Bethe state. The scalar
product is related to the bilinear form

(v,u) = h⌦|
MY

j=1

C(v

j

)

MY

j=1

B(u

j

)|⌦i (3.2)

1This is a particular case of the Drinfeld polynomial P1(u) when all spins along the chain are equal to 1
2 .

4

• For homogeneous XXX spin ½ chain of length L:

satisfies [T (u), T (v)] = 0 for all u and v.
To define a quantum-mechanical system completely, one must determine the action of the elements

of the monodromy matrix in the Hilbert space. In the framework of the ABA the Hilbert space is
constructed as a Fock space associated with a cyclic vector |⌦i, called pseudovacuum, which is an
eigenvector of the operators A and D and is annihilated by the operator C:

A(u)|⌦i = a(u)|⌦i, D(u)|⌦i = d(u)|⌦i, C(u)|⌦i = 0. (2.5)

The dual pseudo-vacuum satisfies the relations

h⌦|A(u) = a(u)h⌦|, h⌦|D(u) = d(u)h⌦|, h⌦|B(u) = 0. (2.6)

Here a(u) and d(u) are are complex-valued functions whose explicit form depends on the choice of
the representation of the algebra (2.2). We will not need the specific form of these functions, except
for some mild analyticity requirements. In other words, we will consider the generalized su(2) model
in the sense of [1], in which the functions a(u) and d(u) are considered as free functional parameters.

The vectors obtained from the pseudo-vacuum |⌦i by acting with the ‘raising operators’ B(u),

|ui = B(u

1

) . . . B(u

N

)|⌦i (2.7)

are called Bethe states. Since the B-operators commute, the state |ui is invariant under the permuta-
tions of the elements of the set u.

The Bethe states that are eigenstates of the transfer matrix are called ‘on-shell’. Their rapidities
obey the Bethe Ansatz equations for the twisted chain
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Here and in the following we will use the notation

Q
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The corresponding eigenvalue of the transfer matrix T (x) is

t(x) =

Q

u

(x� i")

Q

u

(x)

+ 

d(x)

a(x)

Q

u

(x+ i")

Q

u

(x)

. (2.11)

If the rapidities u are generic, the Bethe state is called ‘off-shell’.
In the specific representations of the RTT-algebra, like the XXX spin chain, the on-shell states

form a complete set in the Hilbert space. The XXX spin chain of length L can be deformed by
introducing inhomogeneities ✓

1

, . . . , ✓

L

associated with the L sites of the spin chain. The eigenvalues
of the operators A(u) and D(u) on the vacuum in the inhomogeneous XXX chain are given by

a(u) = Q✓(u+ i"/2) (2.12)
d(u) = Q✓(u� i"/2) (2.13)
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• pseudo-vacuum  |Ω >:

1 Introduction

The problem of computing efficiently scalar products of quantum states appear in the calculation
of form factors and correlation functions within quantum integrable models solvable by the Bethe
Ansatz. Sum expressions for the scalar product between two generic Bethe states in the models based
on the SU(2)-invariant R-matrix were obtained by Izergin and Korepin [1] [2] [3]. A determinant
formula for the the norm-squared of an on-shell state has been conjectured by Gaudin [4], and then
proved by Korepin in [1]. The scalar product between an on-shell and off-shell Bethe vector was
evaluated in determinant form by Slavnov [5]. The Slavnov formula is however not very convenient
in the thermodynamical limit when the two Bethe states involve a large number of magnons. In the
last years this limit of the inner product has been considered in the context of the Integrability in
AdS/CFT. The computation of some 3-point functions of local gauge-invariant single-trace operators
in planar N = 4 supersymmetric Yang-Mills theory boils down to the computation of the inner product
in the thermodynamicical limit [6] [7] [8] [9] [10].

We will review the results obtained in [8] [9] [11] [12] concerning the scalar product of two
Bethe vectors in spin chains with rational su(2) R-matrix, one of which is on-shell. We obtained
an expression for the scalar product which is equivalent to the Slavnov determinant, but has more
symmetry. The advantage of the new expression is that it allows to take the limit when the number
of magnons M becomes large. We give a method to obtain the 1/M expansion and give explicit
expressions for the first two terms. The method can be generalised for a class of Bethe vectors in the
SU(3) case (see [13] and the references therein).

2 Algebraic Bethe Ansatz for integrable models with su(2) R-matrix

We remind some facts about the ABA for the su(2)-type models and introduce our notations. The
monodromy matrix M(u) is a 2⇥ 2 matrix [14] [15]

M(u) =

✓
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C(u) D(u)

◆
. (2.1)

The matrix elements A,B,C,D are operators in the Hilbert space of the model and depend on the
complex spectral parameter u called rapidity. The monodromy matrix obeys the RTT-relation (Yang-
Baxter equation)

R(u� v)(M(u)⌦ I)(I ⌦M(v)) = (I ⌦M(u))(M(v)⌦ I)R(u� v). (2.2)
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acting as a permutation of the spins in the spaces ↵ and �. In the standard
normalization " = 1.

The RTT relation determines the algebra of the monodromy matrix elements, which is the same
for all su(2)-type models. In particular, [B(u), B(v)] = [C(u), C(v)] = 0 for all u and v.

The trace T = A+D of the monodromy matrix is called transfer matrix. Sometimes it is useful
to introduce a twist parameter  (see, for example, [16]). The twisted transfer matrix
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2

• Monodromy matrix M(u)

• a(u) and d(u) will be considered as unrestricted functional 
variables (generalised SU(2) model)

• Eigenstates of the transfer matrix T(u) = Tr M(u) must satisfy the on-shell condition

satisfies [T (u), T (v)] = 0 for all u and v.
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Any Bethe state is completely characterised by its pseudo-momentum, known also under the name
of counting function [17]
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The Bethe equations (2.8), which are formulated in terms of the pseudo-momentum as
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form a complete set in the Hilbert space. The XXX spin chain of length L can be deformed by
introducing inhomogeneities ✓

1

, . . . , ✓

L

associated with the L sites of the spin chain. The eigenvalues
of the operators A(u) and D(u) on the vacuum in the inhomogeneous XXX chain are given by

a(u) = Q✓(u+ i"/2) (2.12)
d(u) = Q✓(u� i"/2) (2.13)

3

where the polynomial Q✓ is defined as1

Q✓(x) =

LY

l=1

(x� ✓

l

), ✓ = {✓
1

, . . . , ✓

L

}. (2.14)

a(u) = (u+ i/2)

L (2.15)
d(u) = (u� i/2)

L (2.16)

Any Bethe state is completely characterised by its pseudo-momentum, known also under the name
of counting function [17]

2ip(u) = log

Q

u

(u+ i")

Q

u

(u� i")

� log

a(u

j

)

d(u

j

)

+ log . (2.17)

The Bethe equations (2.8), which are formulated in terms of the pseudo-momentum as

e

2ip(uj)
+ 1 = 0 (j = 1, . . . ,M), (2.18)

imply that the p(z) takes value ⇡n
j

at z = u

j

, where n
j

is an integer. Thus each solution of the Bethe
equations is characterised by a set of integers n = {n

1

, . . . , n

N

} called mode numbers.

u ! "u, " = 1/L (2.19)

u = {u
1

, . . . , u

M

} (2.20)
v = {v

1

, . . . , v

N

} (2.21)
w = {w

1

, . . . , w

N

} (2.22)

a(u) = (u+

1

2

i")

L

, d(u) = (u� 1

2

i")

L (2.23)

p

w

= p

u

+ p

v

(2.24)

u = �

n

p

u

(�

n

) + p

v

(�

n

) = 2⇡n, n 2 Z (2.25)

3 Determinant formulas for the inner product

In order to expand the states |vi with given a set of rapidities in the basis of eigenvectors |ui of the
monodromy matrix,

|vi =
X

u on shell

hu|v i |ui, (3.1)

1This is a particular case of the Drinfeld polynomial P1(u) when all spins along the chain are equal to 1
2 .

4
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• Off-shell/on-shell inner product is completely 
symmetric function of the total set of rapidities

respect of the permutations of the union w ⌘ {w
1

, . . . , w
2M} = {u

1

, . . . , uM , v
1

, . . . , vM} of the
rapidities of the two states:

(v|u) =

MY
j=1

a(vj)d(uj) Aw[f ] , w = u [ v, (3.4)

where the functional Aw[f ] is given by the following N ⇥N determinant (N = 2M ),

Aw[f ] = det

jk

⇣
wk�1

j � f(wj) (wj + i")k�1

⌘
/ det

jk

⇣
wk�1

j

⌘
. (3.5)

It is proportional to the inner product of an off-shell Bethe state |wi and a state obtained from the left
vacuum by a global SU(2) rotation [11].4

Another determinant formula, which is particularly useful for taking the thermodynamical limit,
is derived in [12]:

Aw[f ] = det (1�K) , (3.6)

where the N ⇥N matrix K has matrix elements

Kjk =

Qj

wj � wk + i"
(j, k = 1, . . . , N) , (3.7)

and the weights Qj are obtained as the residues of the same function at the roots wj :

Qj ⌘ Res
z!w

j

Q(z), Q(z) ⌘ f(z)
Qw(z + i")

Qw(z)
. (3.8)

Here Qw is the Baxter polynomial for the set w, c.f. (2.9). This determinant representation has the
advantage that it exponentiates in a simple way:

logAw[f ] = �
1X
n=1

1

n

NX
j1,...,jn=1

Qj1

wj1 � wj2 + i"

Qj2

wj1 � wj3 + i"
· · · Qj

n

wj
n

� wj1 + i"
. (3.9)

4 Field theory of the inner product

4.1 The A -functional in terms of free fermions

This determinant (3.6) is a particular case of the ⌧ -functions considered in section 9 of [20] and can be
expressed as a Fock-space expectation value for a Neveu-Schwarz chiral fermion living in the rapidity
complex plane and having mode expansion

 (z) =
X

r2Z+ 1
2

 r z
�r� 1

2 ,  ⇤
(z) =

X
r2Z+ 1

2

 ⇤
r zr�

1
2 . (4.1)

The fermion modes are assumed to satisfy the anticommutation relations

[ r, 
⇤
s ]+ = �rs , (4.2)

4In the case of the XXX spin chain, such inner products can be given statistical interpretation as a partial domain-wall
partition function (pDWPF) [19].

5

Jimbo, Miwa, Smirnov,  
arXiv:0811.0439 [math-ph] 
[I,K. , Y. Matsuo, 2012]

 |ui ⌘
MY

j=1

B(u

j

)|⌦i ⇠
MY

j=1

C(u

j

) (S

+

)

2M |⌦i (3.3)

by (u,v) = (�1)

M hu⇤|v i. This follows from the complex Hermitian convention B(u)

†
=

�C(u

⇤
). The inner product can be computed by commuting the B-operators to the left and the A-

operators to the right according to the algebra (2.2), and then applying the relations (2.5) and (2.6).
The resulting sum formula [1] works well for small number of magnons but for larger M becomes
intractable.

An important observation was made by N. Slavnov [5], who realised that when one of the two
states is on-shell, the Korepin sum formula gives the expansion of the determinant of a sum of two
M ⇥M matrices.2 Although the Slavnov determinant formula does not give obvious advantages for
taking the thermodynamical limit, is was used to elaborate alternative determinant formulas, which
are better suited for this task [8] [9] [11] [12].

Up to a trivial factor, the inner product depends on the functional argument

f(z) ⌘ 

d(z)

a(z)

(3.4)

and on two sets of rapidities, u = {u
1

, . . . , u

M

} and v = {v
1

, . . . , v

M

}. Since the rapidities within
each of the two sets are not ordered, the inner product has symmetry S

M

⇥ S

M

, where S

M

is the
group of permutations of M elements. It was shown in [11]3 that the the symmetry is in fact S

2M

.
The inner product is given, up to a trivial factor, by an expression which is completely symmetric with
respect of the permutations of the union w ⌘ {w

1

, . . . , w

2M

} = {u
1

, . . . , u

M

, v

1

, . . . , v

M

} of the
rapidities of the two states:

(v|u) =

MY

j=1

a(v

j

)d(u

j

) A
w

, w = u [ v, (3.5)

where the functional A
w

[f ] is given by the following N ⇥N determinant (N = 2M ),

A
w

= det

jk

✓
w

k�1

j

� 

d(w

j

)

a(w

j

)

(w

j

+ i")

k�1

◆
/ det

jk

⇣
w

k�1

j

⌘
. (3.6)

A
w

= det

jk

✓
w

k�1

j

� 

d(w

j

)

a(w

j

)

(w

j

+ i)

k�1

◆
/ det

jk

⇣
w

k�1

j

⌘
. (3.7)

It is proportional to the inner product of an off-shell Bethe state |wi and a state obtained from the
left vacuum by a global SU(2) rotation [11].4

Another determinant formula, which is particularly useful for taking the thermodynamical limit,
is derived in [12]:

A
w

= det (1�K) , (3.8)
2This property is particular for the su(2) model. The the inner product in the su(n) model is a determinant only for a

restricted class of states [18].
3The case considered in [11] was that of the periodic inhomogeneous XXX spin chain of length L, but the arguments

are trivially extended to the generalised su(2) model.
4In the case of the XXX spin chain, such inner products can be given statistical interpretation as a partial domain-wall

partition function (pDWPF) [19].

5

Proof:

• When the u-rapidities are on shell, the scalar product is given 
by MxM determinant

[N.Slavnov’89]

Inner product in the SU(2) model

where the polynomial Q✓ is defined as1

Q✓(x) =

LY

l=1

(x� ✓

l

), ✓ = {✓
1

, . . . , ✓

L

}. (2.14)

a(u) = (u+ i/2)

L (2.15)
d(u) = (u� i/2)

L (2.16)

Any Bethe state is completely characterised by its pseudo-momentum, known also under the name
of counting function [17]

2ip(z) = log

Q

u

(z + i")

Q

u

(z � i")

� log

a(u

j

)

d(u

j

)

+ log . (2.17)

The Bethe equations (2.8), which are formulated in terms of the pseudo-momentum as

e

2ip(uj)
+ 1 = 0 (j = 1, . . . ,M), (2.18)

imply that the p(z) takes value ⇡n
j

at z = u

j

, where n
j

is an integer. Thus each solution of the Bethe
equations is characterised by a set of integers n = {n

1

, . . . , n

N

} called mode numbers.

u ! "u, " = 1/L (2.19)

u = {u
1

, . . . , u

L1} (2.20)
v = {v

1

, . . . , v

L2} (2.21)
w = {w

1

, . . . , w

L3} (2.22)

a(u) = (u+

1

2

i")

L

, d(u) = (u� 1

2

i")

L (2.23)

3 Determinant formulas for the inner product

In order to expand the states |vi with given a set of rapidities in the basis of eigenvectors |ui of the
monodromy matrix,

|vi =
X

u on shell

hu|v i |ui, (3.1)

we need to compute the scalar product hv|u i of an off-shell and an on-shell Bethe state. The scalar
product is related to the bilinear form

hv,ui = h⌦|
MY

j=1

C(v

j

)

MY

j=1

B(u

j

)|⌦i (3.2)

1This is a particular case of the Drinfeld polynomial P1(u) when all spins along the chain are equal to 1
2 .

4

A consequence: the scalar product depends only on the sum of the two 
pseudo-momenta: 
!
Can we make this property explicit? Yes!

where the polynomial Q✓ is defined as1

Q✓(x) =

LY

l=1

(x� ✓

l

), ✓ = {✓
1

, . . . , ✓

L

}. (2.14)

a(u) = (u+ i/2)

L (2.15)
d(u) = (u� i/2)

L (2.16)

Any Bethe state is completely characterised by its pseudo-momentum, known also under the name
of counting function [17]

2ip(u) = log

Q

u

(u+ i")

Q

u

(u� i")

� log

a(u

j

)

d(u

j

)

+ log . (2.17)

The Bethe equations (2.8), which are formulated in terms of the pseudo-momentum as

e

2ip(uj)
+ 1 = 0 (j = 1, . . . ,M), (2.18)

imply that the p(z) takes value ⇡n
j

at z = u

j

, where n
j

is an integer. Thus each solution of the Bethe
equations is characterised by a set of integers n = {n

1

, . . . , n

N

} called mode numbers.

u ! "u, " = 1/L (2.19)

u = {u
1

, . . . , u

L

} (2.20)
v = {v

1

, . . . , v

L2} (2.21)
w = {w

1

, . . . , w

L3} (2.22)

a(u) = (u+

1

2

i")

L

, d(u) = (u� 1

2

i")

L (2.23)

p

w

= p

u

+ p

v

(2.24)

3 Determinant formulas for the inner product

In order to expand the states |vi with given a set of rapidities in the basis of eigenvectors |ui of the
monodromy matrix,

|vi =
X

u on shell

hu|v i |ui, (3.1)

1This is a particular case of the Drinfeld polynomial P1(u) when all spins along the chain are equal to 1
2 .

4

Two facts:
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Symmetric determinant formulas for the inner product

and on two sets of rapidities, u = {u
1

, . . . , u

M

} and v = {v
1

, . . . , v

M

}. Since the rapidities within
each of the two sets are not ordered, the inner product has symmetry S

M

⇥ S

M

, where S

M

is the
group of permutations of M elements. It was shown in [11]3 that the the symmetry is in fact S

2M

.
The inner product is given, up to a trivial factor, by an expression which is completely symmetric with
respect of the permutations of the union w ⌘ {w

1

, . . . , w

2M

} = {u
1

, . . . , u

M

, v

1

, . . . , v

M

} of the
rapidities of the two states:

hv|u i =

MY

j=1

a(v

j

)d(u

j

) Aw, w = u [ v, (3.4)

where the functional Aw[f ] is given by the following N ⇥N determinant (N = 2M ),

Aw[f ] = det

jk

⇣
w

k�1

j

� f(w

j

) (w

j

+ i")

k�1

⌘
/ det

jk

⇣
w

k�1

j

⌘
. (3.5)

It is proportional to the inner product of an off-shell Bethe state |wi and a state obtained from the left
vacuum by a global SU(2) rotation [11].4

Another determinant formula, which is particularly useful for taking the thermodynamical limit,
is derived in [12]:

Aw[f ] = det (1�K) , (3.6)

where the N ⇥N matrix K has matrix elements

K

jk

=

Q

j

w

j

� w

k

+ i"

(j, k = 1, . . . , N) , (3.7)

and the weights Q
j

are obtained as the residues of the same function at the roots w
j

:

Q

j

⌘ Res
z!wj

Q(z), Q(z) ⌘ f(z)

Qw(z + i")

Qw(z)
. (3.8)

Here Qw is the Baxter polynomial for the set w, c.f. (2.9). This determinant representation has the
advantage that it exponentiates in a simple way:

logAw[f ] = �
1X

n=1

1

n

NX

j1,...,jn=1

Q

j1

w

j1 � w

j2 + i"

Q

j2

w

j1 � w

j3 + i"

· · · Q

jn

w

jn � w

j1 + i"

. (3.9)

4 Field theory of the inner product

4.1 The A -functional in terms of free fermions

This determinant (3.6) is a particular case of the ⌧ -functions considered in section 9 of [20] and can be
expressed as a Fock-space expectation value for a Neveu-Schwarz chiral fermion living in the rapidity
complex plane and having mode expansion

 (z) =

X

r2Z+ 1
2

 

r

z

�r� 1
2
,  

⇤
(z) =

X

r2Z+ 1
2

 

⇤
r

z

r� 1
2
. (4.1)

3The case considered in [11] was that of the periodic inhomogeneous XXX spin chain of length L, but the arguments
are trivially extended to the generalised su(2) model.

4In the case of the XXX spin chain, such inner products can be given statistical interpretation as a partial domain-wall
partition function (pDWPF) [19].

5

[I.K. 2012]

1) Vandermonde-like NxN, N=2M:

by (u,v) = (�1)

M hu⇤|v i. This follows from the complex Hermitian convention B(u)

†
= �C(u

⇤
).

The inner product can be computed by commuting the B-operators to the left and the A-operators to
the right according to the algebra (2.2), and then applying the relations (2.5) and (2.6). The resulting
sum formula [1] works well for small number of magnons but for larger M becomes intractable.

An important observation was made by N. Slavnov [5], who realised that when one of the two
states is on-shell, the Korepin sum formula gives the expansion of the determinant of a sum of two
M ⇥M matrices.2 Although the Slavnov determinant formula does not give obvious advantages for
taking the thermodynamical limit, is was used to elaborate alternative determinant formulas, which
are better suited for this task [8] [9] [11] [12].

Up to a trivial factor, the inner product depends on the functional argument

f(z) ⌘ 

d(z)

a(z)

(3.3)

and on two sets of rapidities, u = {u
1

, . . . , u

M

} and v = {v
1

, . . . , v

M

}. Since the rapidities within
each of the two sets are not ordered, the inner product has symmetry S

M

⇥ S

M

, where S

M

is the
group of permutations of M elements. It was shown in [11]3 that the the symmetry is in fact S

2M

.
The inner product is given, up to a trivial factor, by an expression which is completely symmetric with
respect of the permutations of the union w ⌘ {w

1

, . . . , w

2M

} = {u
1

, . . . , u

M

, v

1

, . . . , v

M

} of the
rapidities of the two states:

(v|u) =

MY

j=1

a(v

j

)d(u

j

) A
w

, w = u [ v, (3.4)

where the functional A
w

[f ] is given by the following N ⇥N determinant (N = 2M ),

A
w

= det

jk

✓
w

k�1

j

� 

d(w

j

)

a(w

j

)

(w

j

+ i")

k�1

◆
/ det

jk

⇣
w

k�1

j

⌘
. (3.5)

A
w

= det

jk

✓
w

k�1

j

� 

d(w

j

)

a(w

j

)

(w

j

+ i)

k�1

◆
/ det

jk

⇣
w

k�1

j

⌘
. (3.6)

It is proportional to the inner product of an off-shell Bethe state |wi and a state obtained from the
left vacuum by a global SU(2) rotation [11].4

Another determinant formula, which is particularly useful for taking the thermodynamical limit,
is derived in [12]:

A
w

= det (1�K) , (3.7)

where the N ⇥N matrix K has matrix elements

K

jk

=

Q

j

w

j

� w

k

+ i"

(j, k = 1, . . . , N) , (3.8)

2This property is particular for the su(2) model. The the inner product in the su(n) model is a determinant only for a
restricted class of states [18].

3The case considered in [11] was that of the periodic inhomogeneous XXX spin chain of length L, but the arguments
are trivially extended to the generalised su(2) model.

4In the case of the XXX spin chain, such inner products can be given statistical interpretation as a partial domain-wall
partition function (pDWPF) [19].
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2) Fredholm-like NxN, N=2M:

[E. Bettelheim, 
I.K.       2014]

and on two sets of rapidities, u = {u
1

, . . . , u

M

} and v = {v
1

, . . . , v

M

}. Since the rapidities within
each of the two sets are not ordered, the inner product has symmetry S

M

⇥ S

M

, where S

M

is the
group of permutations of M elements. It was shown in [11]3 that the the symmetry is in fact S

2M

.
The inner product is given, up to a trivial factor, by an expression which is completely symmetric with
respect of the permutations of the union w ⌘ {w

1

, . . . , w

2M

} = {u
1

, . . . , u

M

, v

1

, . . . , v

M

} of the
rapidities of the two states:

(v|u) =

MY

j=1

a(v

j

)d(u

j

) Aw, w = u [ v, (3.4)

where the functional Aw[f ] is given by the following N ⇥N determinant (N = 2M ),

Aw = det

jk

✓
w

k�1

j

� 

d(w

j

)

a(w

j

)

(w

j

+ i")

k�1

◆
/ det

jk

⇣
w

k�1

j

⌘
. (3.5)

It is proportional to the inner product of an off-shell Bethe state |wi and a state obtained from the left
vacuum by a global SU(2) rotation [11].4

Another determinant formula, which is particularly useful for taking the thermodynamical limit,
is derived in [12]:

Aw = det (1�K) , (3.6)

where the N ⇥N matrix K has matrix elements

K

jk

=

Q

j

w

j

� w

k

+ i"

(j, k = 1, . . . , N) , (3.7)

and the weights Q
j

are obtained as the residues of the same function at the roots w
j

:

Q

j

⌘ Res
z!wj

Q(z), Q(z) ⌘ f(z)

Qw(z + i")

Qw(z)
. (3.8)

Here Qw is the Baxter polynomial for the set w, c.f. (2.9). This determinant representation has the
advantage that it exponentiates in a simple way:

logAw[f ] = �
1X

n=1

1

n

NX

j1,...,jn=1

Q

j1

w

j1 � w

j2 + i"

Q

j2

w

j1 � w

j3 + i"

· · · Q

jn

w

jn � w

j1 + i"

. (3.9)

4 Field theory of the inner product

4.1 The A -functional in terms of free fermions

This determinant (3.6) is a particular case of the ⌧ -functions considered in section 9 of [20] and can be
expressed as a Fock-space expectation value for a Neveu-Schwarz chiral fermion living in the rapidity
complex plane and having mode expansion

 (z) =

X

r2Z+ 1
2

 

r

z

�r� 1
2
,  

⇤
(z) =

X

r2Z+ 1
2

 

⇤
r

z

r� 1
2
. (4.1)

3The case considered in [11] was that of the periodic inhomogeneous XXX spin chain of length L, but the arguments
are trivially extended to the generalised su(2) model.

4In the case of the XXX spin chain, such inner products can be given statistical interpretation as a partial domain-wall
partition function (pDWPF) [19].
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by (u,v) = (�1)

M hu⇤|v i. This follows from the complex Hermitian convention B(u)

†
= �C(u

⇤
).

The inner product can be computed by commuting the B-operators to the left and the A-operators to
the right according to the algebra (2.2), and then applying the relations (2.5) and (2.6). The resulting
sum formula [1] works well for small number of magnons but for larger M becomes intractable.

An important observation was made by N. Slavnov [5], who realised that when one of the two
states is on-shell, the Korepin sum formula gives the expansion of the determinant of a sum of two
M ⇥M matrices.2 Although the Slavnov determinant formula does not give obvious advantages for
taking the thermodynamical limit, is was used to elaborate alternative determinant formulas, which
are better suited for this task [8] [9] [11] [12].

Up to a trivial factor, the inner product depends on the functional argument

f(z) ⌘ 

d(z)

a(z)

(3.3)

and on two sets of rapidities, u = {u
1

, . . . , u

M

} and v = {v
1

, . . . , v

M

}. Since the rapidities within
each of the two sets are not ordered, the inner product has symmetry S

M

⇥ S

M

, where S

M

is the
group of permutations of M elements. It was shown in [11]3 that the the symmetry is in fact S

2M

.
The inner product is given, up to a trivial factor, by an expression which is completely symmetric with
respect of the permutations of the union w ⌘ {w

1

, . . . , w

2M

} = {u
1

, . . . , u

M

, v

1

, . . . , v

M

} of the
rapidities of the two states:

(v|u) =

MY

j=1

a(v

j

)d(u

j

) A
w

, w = u [ v, (3.4)

where the functional A
w

[f ] is given by the following N ⇥N determinant (N = 2M ),

A
w

= det

jk

✓
w

k�1

j

� 

d(w

j

)

a(w

j

)

(w

j

+ i")

k�1

◆
/ det

jk

⇣
w

k�1

j

⌘
. (3.5)

It is proportional to the inner product of an off-shell Bethe state |wi and a state obtained from the left
vacuum by a global SU(2) rotation [11].4

Another determinant formula, which is particularly useful for taking the thermodynamical limit,
is derived in [12]:

A
w

= det (1�K) , (3.6)

where the N ⇥N matrix K has matrix elements

K

jk

=

Q

j

w

j

� w

k

+ i"

(j, k = 1, . . . , N) , (3.7)

and the weights Q
j

are obtained as the residues of the same function at the roots w
j

:

Q

j

⌘ Res
z!wj

Q(z), Q(z) ⌘ 

d(z)

a(z)

Q

w

(z + i")

Q

w

(z)

. (3.8)

2This property is particular for the su(2) model. The the inner product in the su(n) model is a determinant only for a
restricted class of states [18].

3The case considered in [11] was that of the periodic inhomogeneous XXX spin chain of length L, but the arguments
are trivially extended to the generalised su(2) model.

4In the case of the XXX spin chain, such inner products can be given statistical interpretation as a partial domain-wall
partition function (pDWPF) [19].

5

K

jk

=

Q
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+ i

(j, k = 1, . . . , N) , (3.9)

and the weights Q
j

are obtained as the residues of the same function at the roots w
j

:

Q

j

⌘ Res
z!wj

Q(z), Q(z) ⌘ 

d(z)

a(z)

Q

w

(z + i")

Q

w

(z)

. (3.10)

Q(z) ⌘ 

d(z)

a(z)

NY

j=1

z � w

j

+ i"

z � w

j

(N = 2M) (3.11)

Here Q

w

is the Baxter polynomial for the set w, c.f. (2.10). This determinant representation has the
advantage that it exponentiates in a simple way:

logA
w

[f ] = �
1X

n=1

1

n

NX

j1,...,jn=1

Q

j1

w

j1 � w

j2 + i"

Q

j2

w

j1 � w

j3 + i"

· · · Q

jn

w

jn � w

j1 + i"

. (3.12)

4 Field theory of the inner product

4.1 The A -functional in terms of free fermions

This determinant (3.7) is a particular case of the ⌧ -functions considered in section 9 of [20] and can be
expressed as a Fock-space expectation value for a Neveu-Schwarz chiral fermion living in the rapidity
complex plane and having mode expansion

 (z) =

X

r2Z+ 1
2

 

r

z

�r� 1
2
,  

⇤
(z) =

X

r2Z+ 1
2

 

⇤
r

z

r� 1
2
. (4.1)

The fermion modes are assumed to satisfy the anticommutation relations

[ 

r

, 

⇤
s

]

+

= �

rs

, (4.2)

and the left/right vacuum states are defined by

h0| �r

= h0| ⇤
r

= 0 and  

r

|0i =  

⇤
�r

|0i = 0, for r > 0. (4.3)

The operator  ⇤
r

creates a particle (or annihilates a hole) with mode number r and the operator  
r

annihilates a particle (or creates a hole) with mode number r. The particles carry charge 1, while the
holes carry charge �1. The charge zero vacuum states are obtained by filling the Dirac see up to level
zero. Any correlation function of the operators (4.1) is a determinant of two-point correlators

h0| (z) ⇤
(u)|0i = h0| ⇤

(z) (u)|0i = 1

z � u

. (4.4)

The expectation value of several pairs of fermions is given to the determinant of the two-point func-
tions. Thus the determinant (3.7) is equal to the expectation value

A
w

[f ] = h0| exp
0

@
NX

j=1

Q

j

 

⇤
(w

j

) (w

j

+ i")

1

A |0i. (4.5)
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and commute the denominator through the shift operators, using the obvious relations

e

�i@/@uj
1

[u� v]

=

Q

+

v

(u

j

)

Q

v

(u

j

)

1

[u� v]

e

�i@/@uj

e

i@/@vj
1

[u� v]

=

Q

�
u

(v

j

)

Q

u

(v

j

)

1

[u� v]

e

i@/@vj
. (A.21)

Using the definition of the preudomomentum (2.17) we obtain

S
u,v

= (�1)

M

ˆA +

v

[

d

a

Q

+

u

Q

u

] · A �
u

[

Q

�
v

Q

v

] (A.22)

(A.10)

= (�1)

M

ˆA +

v

[

d

a

Q

+

u

Q

u

] · A +

u

[

d

a

Q

+

v

Q

v

] (A.23)

(A.5)

= (�1)

M A +

u[v[
d

a

]. (A.24)

In the second line we also used the fact that the rapidities u are on shell, d

a

Q

+
u

Q

�
u
= �1.

Using the functional identity (A.9) one obtains a second representation of the inner product

(u,v) = 

M

MY

j=1

d(u

j

)d(v

j

) A �
u[v[

�1

a

d

]. (A.25)

A.6 The case of the twisted inhomogeneous XXX chain

In the particular case of twisted inhomogeneous XXX chain, when the functions a and d are given
by the polynomials (2.12), there are additional useful symmetries. It is convenient to introduce the
shifted inhomogeneities z = {z

1

, . . . , z

L

}, with z

j

= ✓

j

� i"/2. Then the polynomials (2.12) are
given by d = Q

z

, a = Q

+

z

and the A -functional becomes a function two sets of two sets of complex
variables, w and z. We will use the notation

A ±
w,z

= A ±
w

[

Q

z

Q

+

z

] . (A.26)

The operator factorisation formula (A.1) takes the form

A ±
w,z

=  

�1

w,z

NY

j=1

⇣
1�  e

±i" @/@wj

⌘
 

w,z

,  

w,z

⌘ �

w

�

zQ
N

j=1

Q
L

l=1

(w

j

� z

l

)

. (A.27)

The representation (A.27) makes sense also for L < N and enjoys an L $ N symmetry exchanging
the magnon rapidities and the inhomogeneities:

A ±
w,z

= (1� )

N�LA ⌥
z,w

. (A.28)

To prove the identity first consider the case L = N and write  
w,z

as the determinant of the Cauchy
kernel (w

j

� z

k

)

�1, after which the identity (A.28) becomes obvious. The identity can be generalised
to 0  N < L by taking sequentially the limit w

L

! 1, . . . , w

N�L+1

! 1. The identity (A.28)
obviously holds also for N > L.
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Using the definition of the preudomomentum (2.17) we obtain
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Q
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�
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(A.10)

= (�1)

M

ˆA +

v

[

d

a

Q

+

u

Q

u

] · A +

u

[

d

a

Q

+

v

Q

v

] (A.23)

(A.5)

= (�1)

M A +

u[v[
d

a

]. (A.24)

In the second line we also used the fact that the rapidities u are on shell, d

a

Q

+
u

Q

�
u
= �1.

Using the functional identity (A.9) one obtains a second representation of the inner product

(u,v) = 

M
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j=1

d(u

j

)d(v

j

) A �
u[v[

�1

a

d

]. (A.25)

A.6 The case of the twisted inhomogeneous XXX chain

In the particular case of twisted inhomogeneous XXX chain, when the functions a and d are given
by the polynomials (2.12), there are additional useful symmetries. It is convenient to introduce the
shifted inhomogeneities z = {z

1

, . . . , z

L

}, with z

j

= ✓

j

� i"/2.

a(z) =

LY

l=1

(u� z

l

+ i), d(z) =

LY

l=1

(u� z

l

+ i) (A.26)

Then the polynomials (2.12) are given by d = Q

z

, a = Q

+

z

and the A -functional becomes a
function two sets of two sets of complex variables, w and z. We will use the notation

A ±
w,z

= A ±
w

[

Q

z

Q

+

z

] . (A.27)

The operator factorisation formula (A.1) takes the form

A ±
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=  

�1

w,z

NY

j=1

⇣
1�  e

±i" @/@wj

⌘
 

w,z

,  

w,z

⌘ �

w

�

zQ
N

j=1

Q
L

l=1

(w

j

� z

l

)

. (A.28)

The representation (A.29) makes sense also for L < N and enjoys an L $ N symmetry exchanging
the magnon rapidities and the inhomogeneities:

A ±
w,z

= (1� )

N�LA ⌥
z,w

. (A.29)
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FIGURE 7. A six-vertex configurations
for the coefficient  121221211111(u) of the
Bethe state |ui, Eq. (3.4).

FIGURE 8. A six-vertex configura-
tions for the inner product hv,u i.

The form of the cubic vertex depends on the choice of the three su(2) sectors. In our particular case
the non-zero terms are with {tj}L13

j=1

= {2L13} and {rj}L23
j=1

= {1L23},

hu,v,w i ⌘
X

 
1...1|{z}
L23

sL12 ...s1
(v)  s1...sL12 2...2|{z}

L13

(u)  
2...2|{z}
L13

1...1|{z}
L23

(w) ,(3.11)

where the summation indices s
1

, . . . sL12 take values 1 and 2.
The cubic vertex hu,v,w i can be evaluated using the fact that it gives the partition function of the

six-vertex model on a lattice obtained by gluing three rectangular lattices with dimensions L
1

⇥N
1

,
L
2

⇥ N
2

and L
3

⇥ N
3

as shown in Fig. 9. The indices 1 and 2 are identified with Z and X or their
complex conjugates, depending on the operator under consideration. First we notice that in the part
of the lattice that has vertical lines labeled by ✓(23), represented by the shaded area in Fig. 9, there
is only one six-vertex configuration, and therefore its contribution to the cubic vertex factorizes out.
The factor is a pure phase if the sets v and ✓(23) are symmetric under complex conjugation. We will
assume that this is the case and will ignore this phase factor. Therefore we can delete this part of
the lattice. Next, we observe that the sub-lattice associated with the operator O

3

factorizes because
all lines that connect it with the rest of the lattice are of type 2. (This factorisation is obvious in the
expression (3.11) for the cubic vertex.) These operations are schematically represented in Fig. 10.

The problem boils down to the calculation of two independent six-vertex partition functions, which
give the two non-trivial factors in the structure constant. These two factors will be computed using
the freezing procedure. The freezing procedure for the first factor works as follows. One starts from a
rectangular lattice corresponding to the scalar product h ṽ|u i. Both sets of rapidities have cardinality
N

1

. The first N
2

rapidities ṽ coincide with the rapidities v characterizing the operator O
3

, the rest
N

3

= N
1

�N
2

= L
1

� L
12

of the rapidities ṽ will be denoted by ṽN2+1

= z̃L12+1

, . . . , ṽN1 = z̃L1 ,
or symbolically, ṽ = v [ z̃.

If we adjust the rapidity of the last magnon to the value of the last inhomogeneity, z̃L1 = ✓L1 � i/2,
then the vertex at the low right corner is necessarily of type c. Then the only possibility for the rest of
the vertices on the last row and the last column is that they are type b. This is what we call “freezing".
Hence last row and the last column form a hooked index line carrying the index 2, as shown in Fig. 11,
left. This procedure is repeated N

3

times, the rapidities of the lowest N
3

rows fixed to z̃ = ✓(13)�i/2.
The result is that the rightmost N

3

indices below the lowest horizontal u-line are fixed to the value 2.
After removing the frozen part of the lattice, shaded in blue in the figure, we obtain that the first factor
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Consider the expansion of a Bethe vector |ui in the local basis |s
1

, . . . , sLi, where sk 2 {1, 2},

|ui =
X

s1,...,sL=1,2

 s1,...,sL(u)|s1, . . . , sLi .(3.4)

Each of the components  s1,...,sL(u) is a sum over all the possible vertex configurations with on a
L ⇥ N rectangle, with all indices fixed to 1 on the left and the upper edges, 2 on the right edge, and
free indices equal to s

1

, . . . , sL, as shown in Fig. 7. Similarly the bra Bethe vector is represented by
the partition function of the six-vertex model on a rectangle, with boundary conditions 1 on the right
and the bottom edge, and 2 on the left edge. With the normalisation of the local basis

h s
1

, . . . , sL|r1, . . . , rL i = �s1,r1 . . . �sL,rL ,(3.5)

the scalar product of two (in general off-shell) Bethe vectors

hv|ui =
X

s1,...,sL=1,2

 s1...sL(u)  s1...sL(v)
⇤(3.6)

is obtained simply by gluing two such partition functions, as shown in Fig. 8, and summing over the
free indices. Besides the sesquilinear form (3.6) (scalar product), we will define the bilinear form (we
call it inner product)

hv,ui = hv,ui =
X

s1,...,sL=1,2

 s1...sL(u)  sL...s1(v).(3.7)

The vertex representation of the inner product (3.7) is obtained by gluing two lattices as the one
shown in Fig. 7 and summing over the free spin indices. The result is the six-vertex partition function
on a rectangular lattice with boundary conditions 1L on the two horizontal edges, and 1N2N on the
two vertical edges. An example of a vertex configuration for such a lattice is given in Fig. 8. The
symmetry hv,ui = hv,ui of the inner product follows from the symmetry off the weights a, b, c of
the vertices in Fig 6 with respect to a rotation by 180 degrees.

It follows from the hermitian conjugation properties of the creation (B) and the annihilation (C)
operators (see the historical note [35]) that for N -magnon states

hv|ui = (�1)N hv⇤,u i ,(3.8)

where the set of rapidities v⇤ is obtained from v by complex conjugation. Since the Hamiltonian
of the XXX chain is hermitian, the sets of rapidities of the Bethe eigenstates are symmetric under
complex conjugation. Therefore the normalisation factor N

1

= | hu,u i | in (2.1) is equal to the
(squared) norm hu|u i of the Bethe eigenstate.

The structure constant C(0)

123

is equal, up to the normalization factor, to the cubic vertex made of the
wave functions of the Bethe states in the representation (3.4),

C(0)

123

=
hu,v,w ip

hu,u i hv,v i hw,w i
,(3.9)

where the cubic vertex is defined as

hu,v,w i ⌘
X

sj ,tj ,rj=1,2

 r1...rL23sL12 ...s1
(v)  s1...sL12 tL13 ...t1

(u)  t1...tL13rL23 ...r1
(w) .(3.10)

hu,v i = hu,v, ; i

Monodromy matrix: 

6

3.1. The su(2) case. Consider the correlation function of three operators, O
1

, O
2

, O
3

with lengths
L
1

, L
2

, L
3

which are described by three sets of rapidities u,v,w with cardinalities N
1

, N
2

, N
3

. The
three operators are such that the O

1

is made of Z,X , O
2

is made of Z̄, X̄ and O
3

is made of Z, X̄ .
It is advantageous to slightly generalize the problem by introducing inhomogeneities associated

with the sites of the three spin chains. Thus the i-th chain is characterized by inhomogeneities ✓(i) =

{✓(i)
1

, . . . , ✓(i)Li
}, i = 1, 2, 3. The three sets of inhomogeneities are not independent, because the

inhomogeneities associated with two sub-chains to be glued should match. Thus the independent sets
of inhomogeneities are associated with the contractions between the i-th and the j-th chain; we denote
them by ✓(ij). The cardinality of the set ✓(ij) is Lij . Then

✓(1) = ✓(12) [ ✓(13), ✓(2) = ✓(12) [ ✓(23), ✓(3) = ✓(13) [ ✓(23).(3.1)

The planarity of the hZZ̄i contractions between the operators O
2

and O
3

and the hXX̄i contrac-
tions between the operators O

1

and O
3

selects only the component with N
3

= L
13

successive X̄’s
and L

3

�N
3

successive Z’s in O
3

, as in the example in Fig. 1. The correlation function is given by
the product of two factors:

• The probability to find the component Tr[ZL23X̄L13 ] in the state |wi.
• The contribution of the remaining contractions can be recast as the scalar product between an

on-shell vector of a spin chain with length L
1

and rapidities u and an off-shell state with the
same length, which is prepared from the state |vi,

We present below the derivation of the two factors using the language of the six-vertex model.

Vertex representation of the su(2) Bethe vectors and the freezing procedure. The three type of
vertex configurations, a, b, c represented in figure 6 have weights

a(u� z) =
u� z + i

u� z
, b(u� z) = 1 , c(u� z) =

i

u� z
.(3.2)

The rapidities u and z = ✓ + i/2 are associated respectively with the horizontal and with the vertical
lines. These weights are given by the three types of non-zero elements of the L-matrix, which in our
case coincides with the R-matrix,

L(u� z) = I+
i

u� z
P , z = ✓ + i/2.(3.3)

Here I is the identity matrix and P is the permutation matrix.

FIGURE 6. Graphical representation of the six non-zero elements of the L -
matrix (3.3). The rapidity u is associated with the horizontal line, while the ra-
pidity z = ✓ + i/2 is associated with the vertical line.

six-vertex 
representation of 
the R-matrix:
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the non-zero terms are with {tj}L13

j=1

= {2L13} and {rj}L23
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where the summation indices s
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The cubic vertex hu,v,w i can be evaluated using the fact that it gives the partition function of the

six-vertex model on a lattice obtained by gluing three rectangular lattices with dimensions L
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⇥ N
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and L
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3

as shown in Fig. 9. The indices 1 and 2 are identified with Z and X or their
complex conjugates, depending on the operator under consideration. First we notice that in the part
of the lattice that has vertical lines labeled by ✓(23), represented by the shaded area in Fig. 9, there
is only one six-vertex configuration, and therefore its contribution to the cubic vertex factorizes out.
The factor is a pure phase if the sets v and ✓(23) are symmetric under complex conjugation. We will
assume that this is the case and will ignore this phase factor. Therefore we can delete this part of
the lattice. Next, we observe that the sub-lattice associated with the operator O

3

factorizes because
all lines that connect it with the rest of the lattice are of type 2. (This factorisation is obvious in the
expression (3.11) for the cubic vertex.) These operations are schematically represented in Fig. 10.

The problem boils down to the calculation of two independent six-vertex partition functions, which
give the two non-trivial factors in the structure constant. These two factors will be computed using
the freezing procedure. The freezing procedure for the first factor works as follows. One starts from a
rectangular lattice corresponding to the scalar product h ṽ|u i. Both sets of rapidities have cardinality
N

1

. The first N
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rapidities ṽ coincide with the rapidities v characterizing the operator O
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, the rest
N

3

= N
1

�N
2

= L
1

� L
12

of the rapidities ṽ will be denoted by ṽN2+1
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, . . . , ṽN1 = z̃L1 ,
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If we adjust the rapidity of the last magnon to the value of the last inhomogeneity, z̃L1 = ✓L1 � i/2,
then the vertex at the low right corner is necessarily of type c. Then the only possibility for the rest of
the vertices on the last row and the last column is that they are type b. This is what we call “freezing".
Hence last row and the last column form a hooked index line carrying the index 2, as shown in Fig. 11,
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times, the rapidities of the lowest N
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rows fixed to z̃ = ✓(13)�i/2.
The result is that the rightmost N

3

indices below the lowest horizontal u-line are fixed to the value 2.
After removing the frozen part of the lattice, shaded in blue in the figure, we obtain that the first factor
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The form of the cubic vertex depends on the choice of the three su(2) sectors. In our particular case
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The cubic vertex hu,v,w i can be evaluated using the fact that it gives the partition function of the

six-vertex model on a lattice obtained by gluing three rectangular lattices with dimensions L
1

⇥N
1

,
L
2

⇥ N
2

and L
3

⇥ N
3

as shown in Fig. 9. The indices 1 and 2 are identified with Z and X or their
complex conjugates, depending on the operator under consideration. First we notice that in the part
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expression (3.11) for the cubic vertex.) These operations are schematically represented in Fig. 10.

The problem boils down to the calculation of two independent six-vertex partition functions, which
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then the vertex at the low right corner is necessarily of type c. Then the only possibility for the rest of
the vertices on the last row and the last column is that they are type b. This is what we call “freezing".
Hence last row and the last column form a hooked index line carrying the index 2, as shown in Fig. 11,
left. This procedure is repeated N
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times, the rapidities of the lowest N
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rows fixed to z̃ = ✓(13)�i/2.
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indices below the lowest horizontal u-line are fixed to the value 2.
After removing the frozen part of the lattice, shaded in blue in the figure, we obtain that the first factor
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Applying the symmetry (A.28) to (3.8) one obtains two different determinant representations, the
first of size N ⇥N and the second of size L⇥ L:

A [",]

w,z
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N

det

jk
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�
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� Q

j

w

j

� w

k

+ i"

◆
= (1� )

N�L

L

det

jk

 
�

jk

�
˜

Q

j

z

j

� z

k

� i"

!
(A.29)

where
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= Res
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. (A.30)

For example, for L = 2 an arbitrary N ,
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. (A.31)

Finally, let us mention that the quantity A ±
w,z

satisfies the reduction formula

A ±
w[t,z[t = A ±

w,z

. (A.32)

A.7 Relation to the six-vertex model with DWBC

The domain wall partition function, DWPF, is the partition function of the six-vertex model on a
square grid with domain wall boundary conditions, DWBC [1,39]. The weights depend on the rapidity
variables w = {w

1

, . . . , w

N

} and z = {z
1

, . . . , z

N

}, associated respectively with the horizontal and
with the vertical lines. As shown by Izergin [40,41], the DWPF can be expressed, up to a factor which
can be eliminated by a renormalization of the six-vertex weights, as a determinant5

Z
w,z

=

det

jk

t(w

j

� z

k

)

det

jk

1

wj�zk+i"

, t(u) =

1

u

� 1

u+ i"

= (1� e

i"@/@u

)

1

u

. (A.33)

The Isergin-Korepin determinant essentially coincides with the value of the A -functional for the
inhomogeneous chain of length L = N :

Z
u,z

=

NY

j,k=1

u

j

� z

k

+ i

u

j

� z

k

A +

u,z

. (A.34)

When L > N , the A -functional evaluates the so called PDWPF [19], which is obtained from the
L⇥ L DWPF by sending sequentially L�N of the rapidities to infinity.

5 For the first time the ratio of determinants (A.33) appeared in the works of M. Gaudin [4, 42] as the scalar product of
two Bethe wave functions for a Bose gas with point-like interaction on an infinite line.
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• N=L (=2M):   Izergin-Korepin determinant  (=DWPF) is a particular case of the 
scalar product

— symmetric under exchanging u and z

The u—z symmetry still holds: 
!
=> NxN  versus LxL    determinant representations of the scalar product

• N<L 

• The scalar product is given by Partial Domain Wall Partition Functions (PDWPF)     
studied by Foda and Wheeler’2012
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B(u

j
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MY
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C(u

j

) (S

+

)
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by (u,v) = (�1)

M hu⇤|v i. This follows from the complex Hermitian convention B(u)

†
=

�C(u

⇤
). The inner product can be computed by commuting the B-operators to the left and the A-

operators to the right according to the algebra (2.2), and then applying the relations (2.5) and (2.6).
The resulting sum formula [1] works well for small number of magnons but for larger M becomes
intractable.

An important observation was made by N. Slavnov [5], who realised that when one of the two
states is on-shell, the Korepin sum formula gives the expansion of the determinant of a sum of two
M ⇥M matrices.2 Although the Slavnov determinant formula does not give obvious advantages for
taking the thermodynamical limit, is was used to elaborate alternative determinant formulas, which
are better suited for this task [8] [9] [11] [12].

Up to a trivial factor, the inner product depends on the functional argument

f(z) ⌘ 

d(z)

a(z)

(3.4)

and on two sets of rapidities, u = {u
1

, . . . , u

M

} and v = {v
1

, . . . , v

M

}. Since the rapidities within
each of the two sets are not ordered, the inner product has symmetry S

M

⇥ S

M

, where S

M

is the
group of permutations of M elements. It was shown in [11]3 that the the symmetry is in fact S

2M

.
The inner product is given, up to a trivial factor, by an expression which is completely symmetric with
respect of the permutations of the union w ⌘ {w

1

, . . . , w
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} = {u
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, . . . , u

M

, v

1

, . . . , v

M

} of the
rapidities of the two states:
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) A
w

, w = u [ v, (3.5)

where the functional A
w

[f ] is given by the following N ⇥N determinant (N = 2M ),
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. (3.7)

It is proportional to the inner product of an off-shell Bethe state |wi and a state obtained from the
left vacuum by a global SU(2) rotation [11].4

Another determinant formula, which is particularly useful for taking the thermodynamical limit,
is derived in [12]:

A
w

= det (1�K) , (3.8)
2This property is particular for the su(2) model. The the inner product in the su(n) model is a determinant only for a

restricted class of states [18].
3The case considered in [11] was that of the periodic inhomogeneous XXX spin chain of length L, but the arguments

are trivially extended to the generalised su(2) model.
4In the case of the XXX spin chain, such inner products can be given statistical interpretation as a partial domain-wall

partition function (pDWPF) [19].
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Figure 1: Left: Physical sheet for r±(u). Right: Physical sheet for R±(u).

where

K±(u, v) =
1

2�i

2

1 � x2

�
1

y � 1
x

± 1

y + 1
x

�
(3.2)

with x = x(u) and y = x(v). The variables u and v belong to the physical sheet, which

means that |x| > 1 and |y| > 1. Since the kernel becomes singular only for u in the

interval [�1, 1], and there is no other singularity when u and v are on the physical sheet,

the functions r±(u) are analytic in C\[�1, 1].

We deduce that the resolvents

R±(u) =
��

n=0

r±(u + 2in�) (3.3)

have a semi-infinite set of equidistant cuts as shown in figure 1. From the explicit form of

the kernels it follows that

r+(u) � 1

u2
, r�(u) � 1

u3
(u ! 1) . (3.4)

The large u behavior of the resolvents is R+(u) � 1/u and R�(u) � 1/u2 .

3.2 Analytic properties of the kernels

3.2.1 Changing the definition of the integration kernels

We will see that the integration kernels in (3.1) simplify significantly when acting on func-

tions which are analytic in the upper half plane and on the real axis. Our strategy will

be to use this simplified form and to extend it to functions that can have cuts on the real

axis. Consider the integral

+��i0�

���i0

dv K±(u, v)F (v) , (3.5)

where F (v) stands either for R+(v + 2i�) or for R�(v + 2i�). The function F (u) is analytic

in the half-plane �u > ��. We will actually need a weaker assumption, namely that the

function F (u) is analytic in the upper half plane �u � 0 with the real axis included.
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La feuille principale des résolvants

Dans le papier [60], écrit en collaboration avec D. Serban et notre étudiant
de l’époque D. Volin, nous étudions la limite de couplage fort de l’équation de
Bethe. Cette limite correspond au régime perturbatif de la théorie de cordes.
Nous avons devéloppé un formalisme basé sur une paramétrisation elliptique
du problème. L’équation de Beisert-Eden-Staudacher (BES), l’équation de
Bethe dans le secteur SU(2), est reformulée en termes d’un problème de Riemann-Hilbert en [73].
Nous avons réussi de reproduire le résultat de Basso et Korchemsky pour le comportement de cou-
plage fort de la fonction s’echelle uniquement à partir des equations fonctionnelles satisfaites par les
résolvants. Cette approche a été très récemment généralisée d’une façon spectaculaire par D. Volin
en collaboration avec N. Gromov, S. Leurent et V. Kazakov, qui ont pu reformuler toute la structure
intégrable de AdS/CFT en termes de rélations fonctuonnelles et conditions d’analyticité.

Fonctions de corrélation dans les théories de jauge supersymétriques
L’intégrabilité à permis d’aller au déla du régime perturbatif, aussi bien en théorie de cordess

qu’en théorie de jauge, et de conjecturer les équations qui donnent le spectre de dimensions anomales
(ou des énergies de la corde) pour toute constante de couplage. Le problème spectral et ainsi en
principe résolu.

Des techniques des modèles intégrables sont développées actuellement pour déterminer les autres
objets fondamentaux de la théorie, les fonctions de corrélation, les amplitudes des gluons et les
boucles de Wilson. L’objectif est d’obtenir une description complète à toute constante de couplage,
et d’utiliser, dans un deuxième temps, cette connaissance pour des théories plus réalistes (QCD). Les
chercheurs de mon unité ont eu des contributions très importantes à ce domaine de recherche.

La structure générale des amplitudes de diffusion de gluons est maintenant assez bien comprise.
Par contre, les fonctions de corrélation des opérateurs invariants de jauge (les traces) constituent
toujours un défi. D’un intérêt particulier sont les fonctions dans la limite semiclassique lorsque la
longueur des traces devient très grand. En termes de la chaîne de spins, les opérateurs semiclassiques
corresponds aux solutions des équations de Bethe caracterisées par un petite nombre des arcs, chacune
composée par un grande nombre des racines de Bethe. Ces opérateurs correspondent à des longues
cordes classiques plongées dans l’espace AdS5 ⇥ S5. Pendant les dernières années, des méthodes
de l’Ansatz de Bethe ont été développés afin d’évaluer la fonction à trois points dans le régime de
coulage faible et pour certains secteurs de la théorie. La difficulté principale ici est qu’on a besoin de
connaitre non seulement la solution des équations de Bethe, mais aussi les fonctions d’onde des trois
états.

En 2011, Gromov, Sever et Vieira ont trouvé une formule élégante analytique pour la limite semi-
classique de la fonction à trois points en supposant qu’un des opérateurs est protégé par la super-
symétrie (BPS). Puis leur résultat a été reformulé par O. Foda en termes de produits scalaires des états
de Bethe pour la chaîne de Heisenberg type XXX.

RMT 2013: Random Matrix Theory for Fluctuating Complex Systems, OISS-Okinawa, 29 October 2013

How to compute  inner products: alternative formula  (only for XXX!) 

�

�
�

�

!
PDWPF

Another way to write the proportionality factor is as

Nw, z = (#z � #w)!
�

w�w

A(w)

D(w)
. (4.8)

The proof Eq. (??) is surprisingly simple. First we transform the representation (??), using the
first of the functional identities (??),

Zu�v,z = (L � 2M)! A �
u�v[E+

z ] = Nu�v, z A +
u�v[1/E+

z ]. (4.9)

This concludes the proof of (??).

5 Concluding remarks

In this paper, we derived an expression for the inner product of an M -magnon Bethe eigenstate and
an M -magnon generic state in the inhomogeneous periodic XXX chain of length #z = L, which is
completely symmetric in the union of the two sets of rapidity parameters:

S̃u,v = (�1)#uA +
u�v[1/E+

z ]. (5.1)

The functional S̃u,v represents a determinant 2M ⇥ 2M and is given essentially by the partition
function with domain boundary conditions on a L ⇥ L square grid, with L � 2M of rapidities sent to
infinity. The functional S̃u,v coincides with the original Slavnov product (??) if the rapidities u are
on shell, and for periodic boundary conditions (no twist in the Bethe equations). In general, S̃u,v and
Su,v are two distinct functionals.

An immediate application of the representation (??) in the study of the semiclassical limit of the
three-point function of long trace operators in the su(2) sector N = 4 SYM, formulated in Ref.
[?]. The closed expression for the structure constant for three non-protected operators was obtained
in Refs. [?, ?] as a generalization of the result for one-protected and two non-protected operators
operators found in Ref. [?]. The classical limit of the functionals Su,v and S̃u,v is the same, but if
one is interested in the subleading terms, second functional is much more convenient to deal with. On
the other hand, the expression (??) with generic inhomogeneity parameters can be used to reproduce
the higher orders in the weak coupling expansion of the structure constant, as it has been argued
in [?, ?].

The alternative representation of the inner product (??), found in this paper, has a natural interpre-
tation on terms of the Fock space for the Algebraic Bethe Ansatz. The functional S̃u,v is proportional
to the inner product

S̃u,v � � �L| (S�)L�2M
M�

j=1

B(vj)
M�

j=1

B(uj)|�L�

� ��L|
M�

j=1

C(vj)
M�

j=1

C(uj) (S+)L�2M |�L� . (5.2)

The second functional has the same structure as the result of a particle-hole transformation on the
ket vector on the rhs of the original inner product [Eq. (??)]. In case of a non-zero twist, the dual
rapidities are different than the original rapidities [?]. In the case we are considering, M of the dual
rapidities coincide with the original ones, while the the rest L � 2M of them go to infinity. This
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   1. Inner product = Partial Domain Wall Partition Function (PDWPF) [I.K., Y. Matsuo, 2012]

�

�
�

�Inner product

Proof:

�u|v� = ��L|
M�

k=1

C(vk)
M�

j=1

B(uk)|�L� , (2.11)

can be computed by applying the relations of the RTT algebra (2.3). For example, the scalar product
of two one-magnon states is

�v|u� =
i

u � v
(A(v)D(u) � A(u)D(v)) . (2.12)

A Bethe state is an eigenvector of the transfer matrices [Eq. (2.5)] if the rapidities u = {u1, . . . uM}
satisfies the on-shell condition, which is given by the Bethe equations [13]

M�

k=1

uj � uk + i

uj � uk � i
= �

L�

m=1

uj � zm + i

uj � zm
, j = 1, . . . , M. (2.13)

To avoid lengthy formulas, throughout this paper we will use systematically the following notations.
For any set w = {wj}N

j=1 of points in the complex plane, we define the Baxter polynomial

Qz(u)
def
=

L�

l=1

(u � zl) (2.14)

Qw(u)
def
=

N�

j=1

(u � wj), N = #w, (2.15)

as well as the rational function

E±
u (u)

def
=

Qu(u ± i)

Qu(u)
. (2.16)

In these notations, the eigenvalue Tu(u) of the transfer matrix on the on-shell state |u� is

Tu(u) = Qz(u + i) E�
u (u) + Qz(u) E+

u (u). (2.17)

Another way to write the Bethe equations is as

e2ipu(u) = �1, u � u, (2.18)

where the pseudomomentum pu, known also as counting function, is defined modulo � by

e2ipu =
Qz(u)

Qz(u + i)

Qu(u + i)

Qu(u � i)
=

1

E+
z

E+
u

E�
u

. (2.19)

As shown by Slavnov [3], when the state |u� is on shell, the inner product with a generic Bethe
state �v| is a determinant. One can write the Slavnov determinant formula as

�v|u� =
M�

j=1

A(vj)D(uj) Su,v , (2.20)

Su,v =
detjk �(uj , vk)

detjk
1

uj�vk+i

, (2.21)

4

configuration 6v pour le produit scalaire

J’ai généralisé dans [80,82] le résultat de Gromov, Sever et Vieira pour
le cas de trois opérateurs semiclassiques non-protegé. Notamment j’ai
trouvé une expression analytique pour la fonction de corrélation de trois
opérateurs semiclassiques appartenant à des secteurs su(2) de la théorie
dont le groupe total de symétrie est PS(2, 2|4). Ce résultat utilise une
nouvelle représentation du produit scalaire de deux états de Bethe dont
l’un est un état propre de l’Hamiltonian. L’expression analytique pour la
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FIGURE 7. A six-vertex configurations
for the coefficient  121221211111(u) of the
Bethe state |ui, Eq. (3.4).

�

�
�

FIGURE 8. A six-vertex configura-
tions for the inner product hv,u i.

The form of the cubic vertex depends on the choice of the three su(2) sectors. In our particular case
the non-zero terms are with {tj}L13

j=1

= {2L13} and {rj}L23
j=1

= {1L23},

hu,v,w i ⌘
X

 
1...1|{z}
L23

sL12 ...s1
(v)  s1...sL12 2...2|{z}
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(u)  
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(w) ,(3.11)

where the summation indices s
1

, . . . sL12 take values 1 and 2.
The cubic vertex hu,v,w i can be evaluated using the fact that it gives the partition function of the

six-vertex model on a lattice obtained by gluing three rectangular lattices with dimensions L
1

⇥N
1

,
L
2

⇥ N
2

and L
3

⇥ N
3

as shown in Fig. 9. The indices 1 and 2 are identified with Z and X or their
complex conjugates, depending on the operator under consideration. First we notice that in the part
of the lattice that has vertical lines labeled by ✓(23), represented by the shaded area in Fig. 9, there
is only one six-vertex configuration, and therefore its contribution to the cubic vertex factorizes out.
The factor is a pure phase if the sets v and ✓(23) are symmetric under complex conjugation. We will
assume that this is the case and will ignore this phase factor. Therefore we can delete this part of
the lattice. Next, we observe that the sub-lattice associated with the operator O

3

factorizes because
all lines that connect it with the rest of the lattice are of type 2. (This factorisation is obvious in the
expression (3.11) for the cubic vertex.) These operations are schematically represented in Fig. 10.

The problem boils down to the calculation of two independent six-vertex partition functions, which
give the two non-trivial factors in the structure constant. These two factors will be computed using
the freezing procedure. The freezing procedure for the first factor works as follows. One starts from a
rectangular lattice corresponding to the scalar product h ṽ|u i. Both sets of rapidities have cardinality
N

1

. The first N
2

rapidities ṽ coincide with the rapidities v characterizing the operator O
3

, the rest
N

3

= N
1

�N
2

= L
1

� L
12

of the rapidities ṽ will be denoted by ṽN2+1

= z̃L12+1

, . . . , ṽN1 = z̃L1 ,
or symbolically, ṽ = v [ z̃.

If we adjust the rapidity of the last magnon to the value of the last inhomogeneity, z̃L1 = ✓L1 � i/2,
then the vertex at the low right corner is necessarily of type c. Then the only possibility for the rest of
the vertices on the last row and the last column is that they are type b. This is what we call “freezing".
Hence last row and the last column form a hooked index line carrying the index 2, as shown in Fig. 11,
left. This procedure is repeated N

3

times, the rapidities of the lowest N
3

rows fixed to z̃ = ✓(13)�i/2.
The result is that the rightmost N

3

indices below the lowest horizontal u-line are fixed to the value 2.
After removing the frozen part of the lattice, shaded in blue in the figure, we obtain that the first factor

= Σ

free boundary condition

[I.K, Y. Matsuo’2012]

 … and w-z symmetry:
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• This is an expectation value for a chiral bosonic field

As a consequance, the Fock space representation (3.5) takes the form
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dx
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Q
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(x) ⇤
(x) (x+ i)

◆
|0i, (3.7)

where the contour Cu encircles the points u and leaves outside all other singularities of Q
"

. Expanding
the exponent and performing the gaussian contractions, one writes the A -functional in the form of a
Fredholm determinant
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Since the function Q
i

has exactly N poles inside the contour Cu, only the first N terms of the series
are non-zero. The series exponentiates to
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This is the free energy of the fermionic theory, given by the sum of all vacuum loops. The factor (�1)

because of the Fermi statistics and the factor 1/n accounts for the cyclic symmetry of the loops.
On the other hand, the cumulant expansion suggests the following answer
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3.2 Bosonic theory and Coulomb gas

Alternatively, one can express the A -function in term of a chiral boson �(x) with two-point function

h0|�(x)�(y)|0i = log(x� y). (3.11)

After bosonization  (x) ! e�(x) and  ⇤
(x) ! e��(x), where we assumed that the exponents of the

gaussian field are normally ordered, the fermion bilinear  ⇤
(x) (x + i) becomes, up to a numerical

factor, a chiral vertex operator of zero charge

V
"

(x) ⌘ e�(x+i)��(x). (3.12)

Applying the OPE

e��(x) e�(u) ⇠ 1

x� u
e�(u)��(x) (3.13)

with u = x+ i, we write fermion bilinear in a bosonized form as
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(x) (x+ i) ! e��(x)e�(x+i)

= �1

i
V
"

(x). (3.14)

The resulting bosonic field theory is that of a two-dimensional gaussian field �(x, x̄) perturbed by
the chiral interaction term Q

"

V . The grand-canonical Coulomb-gas partition function
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CFT representation of the Fredholm determinant

Figure 1: Schematic representation of the contour Cw and the
deformed contour C.

where |0i is the bosonic vacuul state with zero charge. Expanding the exponential and applying the
OPE (4.11) one writes the expectation value as the grand-canonical Coulomb-gas partition function
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After applying the Cauchy identity, we get back the Fredholm determinant (4.7).

4.3 The thermodynamical limit N ! 1
Although the roots w = {w

1

, . . . , w

N

} are off-shell, typically they can be divided into two or three
on-shell subsets w

(k), each representing a lowest energy solution of the Bethe equations for given
(large) magnon number N (k). Such solutions are characterised by a small number of ‘macroscopic
Bethe strings’ [21] [22] [23].

Assuming that this is the case, in the limit N ! 1 the roots form one or several arrays of
macroscopic size and the distribution of the roots along these arrays is approximated by continuous
densities on a collection of contours in the complex rapidity plane. We choose an N -dependent
normalisation of the rapidity such that " ⇠ 1/N . Then the typical size of the contours and the
densities will remain finite in the limit " ! 0.

There are several possible approaches in computing the thermodynamical limit [24] [12], all of
them based on a coarse-graining procedure. Here we will review the other method used in [12], which
is based on the field-theoretical formulation of the problem, eq. (4.13).

In order to take advantage of the contour-integral representation, the original integration contour
C
w

surrounding the poles w of the integrand, should be deformed to a contour C which remains at
finite distance from the singularities of the function Q when " ! 0. Along the contour C the function
Q(z) can be considered as a sufficiently smooth. In all nontrivial applications the weight function Q
has a dditional poles, which are those of the function f . The contour C separates the roots w from the
poles of f .

4.4 Coarse-graining

We would like to compute the "-expansion of the expectation value (4.13), with C
w

replaced by C.
This is a semi-classical expansion with Planck constant ~ = ". As any semi-classical expansion, the
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After applying the Cauchy identity, we get back the Fredholm determinant (4.7).
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on-shell subsets w

(k), each representing a lowest energy solution of the Bethe equations for given
(large) magnon number N (k). Such solutions are characterised by a small number of ‘macroscopic
Bethe strings’ [21] [22] [23].

Assuming that this is the case, in the limit N ! 1 the roots form one or several arrays of
macroscopic size and the distribution of the roots along these arrays is approximated by continuous
densities on a collection of contours in the complex rapidity plane. We choose an N -dependent
normalisation of the rapidity such that " ⇠ 1/N . Then the typical size of the contours and the
densities will remain finite in the limit " ! 0.

There are several possible approaches in computing the thermodynamical limit [24] [12], all of
them based on a coarse-graining procedure. Here we will review the other method used in [12], which
is based on the field-theoretical formulation of the problem, eq. (4.14).

In order to take advantage of the contour-integral representation, the original integration contour
C
w

surrounding the poles w of the integrand, should be deformed to a contour C which remains at
finite distance from the singularities of the function Q when " ! 0. Along the contour C the function
Q(z) can be considered as a sufficiently smooth. In all nontrivial applications the weight function Q
has a dditional poles, which are those of the function f . The contour C separates the roots w from the
poles of f .
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In order to take the large N limit, we will need reformulate the problem entirely in terms of the
meromorphic function Q(z). The discrete sum of fermion bilinears in the exponent on the rhs of
(4.5) can be written as a contour integral, using the fact that the quantities Q

j

, defined by (3.10), are
residues of Q(z) at z = w

j

. As a consequance, the Fock space representation (4.5) takes the form
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where the contour C
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encircles the points w and leaves outside all other singularities of Q. Expanding
the exponent and performing the gaussian contractions, one writes the A -functional in the form of a
Fredholm determinant
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Since the function Q has exactly N poles inside the contour C
w

, only the first N terms of the series
are non-zero. The series exponentiates to
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This is the free energy of the fermionic theory, given by the sum of all vacuum loops. The factor (�1)

because of the Fermi statistics and the factor 1/n accounts for the cyclic symmetry of the loops. The
series (4.8) can be of course obtained directly from (3.12).

4.2 Bosonic theory and Coulomb gas

Alternatively, one can express the A -function in term of a chiral boson �(x) with two-point function

h0|�(z)�(u)|0i = log(z � u). (4.9)

After bosonization  (z) ! e

�(z) and  ⇤
(z) ! e

��(z), where we assumed that the exponents of the
gaussian field are normally ordered, the fermion bilinear  ⇤

(z) (z + i") becomes, up to a numerical
factor, a chiral vertex operator of zero charge
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Figure 1: Schematic representation of the contour Cw and the
deformed contour C.

4.3 The thermodynamical limit N ! 1
Although the roots w = {w

1

, . . . , w

N

} are off-shell, typically they can be divided into two or three
on-shell subsets w

(k), each representing a lowest energy solution of the Bethe equations for given
(large) magnon number N (k). Such solutions are characterised by a small number of ‘macroscopic
Bethe strings’ [21] [22] [23].

Assuming that this is the case, in the limit N ! 1 the roots form one or several arrays of
macroscopic size and the distribution of the roots along these arrays is approximated by continuous
densities on a collection of contours in the complex rapidity plane. We choose an N -dependent
normalisation of the rapidity such that " ⇠ 1/N . Then the typical size of the contours and the
densities will remain finite in the limit " ! 0.

There are several possible approaches in computing the thermodynamical limit [24] [12], all of
them based on a coarse-graining procedure. Here we will review the other method used in [12], which
is based on the field-theoretical formulation of the problem, eq. (4.13).

In order to take advantage of the contour-integral representation, the original integration contour
C
w

surrounding the poles w of the integrand, should be deformed to a contour C which remains at
finite distance from the singularities of the function Q when " ! 0. Along the contour C the function
Q(z) can be considered as a sufficiently smooth. In all nontrivial applications the weight function Q
has a dditional poles, which are those of the function f . The contour C separates the roots w from the
poles of f .

4.4 Coarse-graining

We would like to compute the "-expansion of the expectation value (4.13), with C
w

replaced by C.
This is a semi-classical expansion with Planck constant ~ = ". As any semi-classical expansion, the
perturbative expansion in " is an asymptotic expansion. Our strategy is to introduce a cutoff ⇤, such
that

" ⌧ ⇤ ⌧ N" (N" ⇠ 1), (4.15)

integrate the ultra-violet (fast) part of the theory in order to obtain an effective infrared (slow) theory.
The splitting of the bosonic field into slow and fast pieces into slow and fast pieces is possible only
in the thermodynamical limit " ! 0. In this limit the dependence on ⇤ enters through exponenttially
small non-perturbative terms and the perturbative expansion in " does not depend on ⇤.

We thus cut the contour C into segments of length ⇤ and compute the effective action for the slow
component as the sum of the connected n-point correlators (cumulants) of the vertex operator V . The
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Assuming that this is the case, in the limit N ! 1 the roots form one or several arrays of
macroscopic size and the distribution of the roots along these arrays is approximated by continuous
densities on a collection of contours in the complex rapidity plane. We choose an N -dependent
normalisation of the rapidity such that " ⇠ 1/N . Then the typical size of the contours and the
densities will remain finite in the limit " ! 0.

There are several possible approaches in computing the thermodynamical limit [24] [12], all of
them based on a coarse-graining procedure. Here we will review the other method used in [12], which
is based on the field-theoretical formulation of the problem, eq. (4.13).

In order to take advantage of the contour-integral representation, the original integration contour
C
w

surrounding the poles w of the integrand, should be deformed to a contour C which remains at
finite distance from the singularities of the function Q when " ! 0. Along the contour C the function
Q(z) can be considered as a sufficiently smooth. In all nontrivial applications the weight function Q
has a dditional poles, which are those of the function f . The contour C separates the roots w from the
poles of f .

4.4 Coarse-graining

We would like to compute the "-expansion of the expectation value (4.13), with C
w

replaced by C.
This is a semi-classical expansion with Planck constant ~ = ". As any semi-classical expansion, the
perturbative expansion in " is an asymptotic expansion. Our strategy is to introduce a cutoff ⇤, such
that

" ⌧ ⇤ ⌧ N" (N" ⇠ 1), (4.15)

integrate the ultra-violet (fast) part of the theory in order to obtain an effective infrared (slow) theory.
The splitting of the bosonic field into slow and fast pieces into slow and fast pieces is possible only
in the thermodynamical limit " ! 0. In this limit the dependence on ⇤ enters through exponenttially
small non-perturbative terms and the perturbative expansion in " does not depend on ⇤.

We thus cut the contour C into segments of length ⇤ and compute the effective action for the slow
component as the sum of the connected n-point correlators (cumulants) of the vertex operator V . The
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of counting function [17]

2ip(u) = log

Q

u

(u+ i")

Q

u

(u� i")

� log

a(u

j

)

d(u

j

)

+ log . (2.17)
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3 Determinant formulas for the inner product

In order to expand the states |vi with given a set of rapidities in the basis of eigenvectors |ui of the
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Effective IR field theory in the semi-classical limit

Semi-classical expansion:

• We will solve exactly the UV limit and find an effective IR theory 

The interaction between two dipoles depends both on the distance and on the direction. If " = |"|i,
then the force between two dipoles is repulsive if they are spaced horizontally and attractive if they
are spaced vertically.

hV
"

(x)V
"

(y)i = 1� 1

(x� y)2 + 1

. (4.14)

As the interaction rapidly decreases at large distances, one can compute the thermodynamics of
the dipole gas by performing iterated Mayer expansion as in [18]. In field theory terms, this amounts
to split the field into a fast and a slow components, �(x) = �slow + � fast. The fast and the slow
modes are separated by an intermediate scale ⇤ such that |"| ⌧ ⇤ ⌧ N |"|. At small distances (with
respect to ⇤) the dynamics is determined only by the pairwise interactions and the slowly varying
external potential can be treated as an entire function. Then the theory becomes solvable. Integrating
with respect to the fast degrees of freedom, one obtains an effective theory for the slow degrees of
freedom which are relevant for the infrared behaviour.4 We will do that at a reasonably intuitive level;
a rigorous procedure can be developed in close analogy with the analysis of [14, 18, 19].

The effective interaction for the slow component of the field is obtained by integrating the OPE of
a product of n vertex operators

V
"

(x1) . . .V"

(x
n

) =

Y

j<k

(x
j

� x
k

)

2

(x
j

� x
k

)

2 � "2
: V

"

(x1) . . .V"

(x
n

) : (4.15)

along a small segment of the contour C containing the point x. his is essentially the computation
done in [21]. Since we want to evaluate the effect of the short-distance interaction due to the poles,
we can assume that the rest of the integrand is analytic everywhere. Then the integration can be
performed by residues using the Cauchy identity. The easiest way to compute the integral is to fix
x1 = x and integrate with respect to x2, . . . , xn. We expand the numerical factor in (4.15) as a sum
over permutations. The (n� 1)! permutations representing maximal cycles of length n give identical
contributions to the residue. For the rest of the permutations the contour integral vanishes. We find
(x

jk

⌘ x
j

� x
k

)

˛ V
"

(x1) . . .V"

(x
n

)

(�")n n!

nY

k=2

dx
k

2⇡i
⇠ (n� 1)!

n!

˛ Q
n

k=2
dx

k

2⇡i : V(x1) · · · V(xn) :
("� x12) . . . ("� x

n�1,n)("� x
n,1)

= � 1

n2"
e�(x1+n")��(x1). (4.16)

The effective theory for the slow component therefore contains bound states of two oppositely oriented
charges spaced at distance n", represented by the vertex operators

V
n"

(x) ⌘ e��(x)+�(x+n"). (4.17)
4 The splitting into a fast and a slow components can be done explicitly if the contour C can be placed along the real axis.

Introduce a cutoff ⇤ such that 1/|"| ⌧ ⇤ ⌧ N/|"|. Then the bosonic field has a continuum of Fourier modes ↵(E) and the
slow and fast parts can be defined as �slow(x) =

´
|E|<⇤

dE↵(E) eiEx

,� fast(x) =
´
|E|>⇤

dE↵(E) eiEx. The propagators
of the slow and the fast components are h0|@�slow(x),�slow(y)|0i = (1 � e

i⇤(x�y))/(x � y), h0|@� fast(x),� fast(y)|0i =
e

i⇤(x�y)
/(x� y). The propagator for the slow component contains a strongly oscillating term whose role is to kill the pole

at x = y and which can be neglected far from the diagonal, while the numerator in the propagator of the fast component
can be replaced by 1 at small distances. The effects of the cutoff are thus exponentially small and do not influence the
perturbative quasiclassical expansion.
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log det(1�K) = F

0

+ F

1

+ F

2

+ · · ·+O(e

�⇤

) (4.36)

Here we added an experimentally found logarithmic term (by Kolya Gromov), still to be derived.

Remark 1. If we specify to the case of the (inhomogeneous, twisted) spin chain, considered in [12],
then f =  d/a with a, d given by (2.12). In this case the classical potential is

�(z) = logQ

w

(z)� logQ✓(z � i"/2). (4.37)

Remark 2. Going back to the fermion representation, we write the result as a Fredholm determi-
nant

A
w

[f ] ⇡ h0| exp
✓I

C

dz

2⇡i

e

��(z)

 

⇤
(z) log(1� D) (z)e�(z)

◆
|0i = Det(1� ˆK), (4.38)

where the Fredholm operator ˆK acts as

ˆK⇠(z) =
I

C

dz

1

2⇡i

ˆK(z, z

1

)⇠(z

1

),

ˆK(z, z

1

) =

1X

n=1

e

��(z)+�(z+i"n)

z � z

1

+ i"n

. (4.39)

The expression in terms of a Fredholm determinant can be obtained directly by performing the cumu-
lant expansion for the expression of the A -functional as a product of shift operators [9]

A [f ] =

1
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[g]

NY

j=1

(1� e

i"@/@wj
)

NY

j=1

 

w

[g],

 

w

[g] =

Q
j<k

(w

j

� w

k

)

Q
N

j=1

g(w

j

)

, f(z) =

g(z)

g(z + i")

.

(4.40)

4.5 The first two orders of the semi-classical expansion

The effective IR theory is compatible with the semi-classical expansion being of the form

logA
u,v

=

F

0

"

+ F

1

+ "F

2

+ · · ·+O(e

�⇤/"

). (4.41)

Below we develop a diagram technique for computing the coefficients in the expansion. First we
notice that the "-expansion of the effective interaction in (4.29) depends on the field � through the
derivatives @�, @2�, etc. We therefore consider the first derivative derivative @� as an independent
field

'(z) ⌘ �@�(z) (4.42)

with two-point function

G(z, u) = @

z

@

u

log(z � u) =

1

(z � u)

2

. (4.43)

In order to derive the diagram technique, we formulate the expectation value (4.29) as a path integral
for the (0 + 1)-dimensional field '(x) defined on the contour C. The two-point function (4.43) can
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1) Deform the contour away from the roots wj, to have slowly varying weight function Q(x)  

2) Introduce intermediate scale 1 << Λ<< N   and split the field into a slow and fast components: 

3) Integrate out the fast component and obtain an effective action for the slow component. 
Effective action as the sum of all connected correlators (cumulants) 
!
!

The n-th cumulant: 

4.4 Coarse-graining

We would like to compute the "-expansion of the expectation value (4.15), with C
w

replaced by C.
This is a semi-classical expansion with Planck constant ~ = ". As any semi-classical expansion, the
perturbative expansion in " is an asymptotic expansion. Our strategy is to introduce a cutoff ⇤, such
that

" ⌧ ⇤ ⌧ N" (N" ⇠ 1), (4.18)

integrate the ultra-violet (fast) part of the theory in order to obtain an effective infrared (slow) theory.
The splitting of the bosonic field into slow and fast pieces into slow and fast pieces is possible only
in the thermodynamical limit " ! 0. In this limit the dependence on ⇤ enters through exponenttially
small non-perturbative terms and the perturbative expansion in " does not depend on ⇤.

We thus cut the contour C into segments of length ⇤ and compute the effective action for the slow
component as the sum of the connected n-point correlators (cumulants) of the vertex operator V . The
n-th cumulant ⌅

n

(z) is obtained by integrating the OPE of a product of n vertex operators

V
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(z
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) . . .V
"

(z

n

) =

Y

j<k

(z

j

� z

k

)

2

(z

j

� z

k

)

2

+ "

2

: V
"

(z

1

) . . .V
"

(z

n

) : (4.19)

along a segment of the contour C of size ⇤, containing the point z. Since we want to evaluate the
effect of the short-distance interaction due to the poles, we can assume that the rest of the integrand
is analytic everywhere. Then the integration can be performed by residues using the Cauchy identity.
This computation has been done previously in [25]. The easiest way to compute the integral is to fix
z

1

= z and integrate with respect to z

2

, . . . , z

n

. We expand the numerical factor in (4.19) as a sum
over permutations. The (n� 1)! permutations representing maximal cycles of length n give identical
contributions to the residue. For the rest of the permutations the contour integral vanishes. We find
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) · · · V
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) . . . (i"� z

n�1,n

)(i"� z

n,1

)

= � 1

n

2

i"

V
n"

(z)

where

V
n"

(z) ⌘ : V
"

(x)V
"

(x+ i") . . .V
"

(x+ ni") : = e

�(z+ni")��(z)

. (4.20)

The interaction potential of the effective coarse-grained theory therefore contains, besides the
original vertex operator V

1

⌘ V , all composite vertex operators V
n"

with n . ⇤. If one repeats the
computation (4.20) with the weights Q, one obtains for the n-th cumulant

⌅

n

(z) = � 1

i"

e

�(z+in")��(z)

e

�(z+in")��(z)

n

2

, (4.21)

Q
n

(z) = Q(z)Q(z + i") . . .Q(z + in") = e

��(x)+�(x+ni") (4.22)
e

�(z+i")��(z)

= Q(z). (4.23)

⌅

n

(z) = �1

i

Q(z)Q(z + i) . . .Q(z + in)

n

2

e

�(z+in)��(z) (4.24)

(4.25)
e

�(z+i)��(z)

= Q(z). (4.26)

9

Does not depend on the cutoff!
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a pair of oppositely oriented 
Coulomb charges (a dipole)

After bosonization  (z) ! e�(z) and  ⇤
(z) ! e��(z), where we assumed that the exponents of the

gaussian field are normally ordered, the fermion bilinear  ⇤
(z) (z + i") becomes, up to a numerical

factor, a chiral vertex operator of zero charge

V"(z) ⌘ e�(z+i")��(z). (4.10)

Applying the OPE

e��(z) e�(u) ⇠ 1

z � u
e�(u)��(z) (4.11)

with u = z + i", we write fermion bilinear in a bosonized form as

 ⇤
(x) (x+ i") ! e��(x)e�(x+i")

= � 1

i"
V"(x). (4.12)

The bosonized version of the operator representation (4.6) is

Aw[f ] = h0| exp
✓
� 1

i"

I
Cw

dz

2⇡i
Q(z)V"(z)

◆
|0i, (4.13)

where |0i is the bosonic vacuul state with zero charge. Expanding the exponential and applying the
OPE (4.11) one writes the expectation value as the grand-canonical Coulomb-gas partition function

Aw[f ] =
NX

n=0

(�1)

n

n!

nY
j=1

I
Cw

dzj
2⇡i

Q(zj)

i"

nY
j<k

(zj � zk)2

(zj � zk)2 � i"2
. (4.14)

After applying the Cauchy identity, we get back the Fredholm determinant (4.7).

4.3 The thermodynamical limit N ! 1
Although the roots w = {w

1

, . . . , wN} are off-shell, typically they can be divided into two or three
on-shell subsets w(k), each representing a lowest energy solution of the Bethe equations for given
(large) magnon number N (k). Such solutions are characterised by a small number of ‘macroscopic
Bethe strings’ [21] [22] [23].

Assuming that this is the case, in the limit N ! 1 the roots form one or several arrays of
macroscopic size and the distribution of the roots along these arrays is approximated by continuous
densities on a collection of contours in the complex rapidity plane. We choose an N -dependent
normalisation of the rapidity such that " ⇠ 1/N . Then the typical size of the contours and the
densities will remain finite in the limit "! 0.

There are several possible approaches in computing the thermodynamical limit [24] [12], all of
them based on a coarse-graining procedure. Here we will review the other method used in [12], which
is based on the field-theoretical formulation of the problem, eq. (4.13).

In order to take advantage of the contour-integral representation, the original integration contour
Cw surrounding the poles w of the integrand, should be deformed to a contour C which remains at
finite distance from the singularities of the function Q when "! 0. Along the contour C the function
Q(z) can be considered as a sufficiently smooth. In all nontrivial applications the weight function Q
has a dditional poles, which are those of the function f . The contour C separates the roots w from the
poles of f .
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The “fundamental” dipoles form bound 
complexes of length n =1,2,3,…

• Clustering:

“composite particle”
“fundamental 
particles”

�� ��

�

�

��

��

��

Q(z)Q(z + i) . . .Q(z + in) = e

�(z+in)��(z) (4.27)

Q(z) = e

�(z+i")��(x)

, �(z) =

NX

j=1

log(z � w

j

)� log

a(z)

d(z)

(4.28)

As the spacing n" should be smaller than the cut-off length ⇤, from the perspective of the effective
infrared theory all these particles are point-like. We thus obtained that in the semi-classical limit the
A -functional is given, up to non-perturbative terms, by the expectation value

det(1�K) ⇡
*
exp

0

@1

"

⇤/"X

n=1

1

n

2

I

C

dz

2⇡

e

�(z+in")��(z)

e

�(z+in")��(z)

1

A
+
. (4.29)

The effective potential can be given a nice operator form, which will be used to extract the pertur-
bative series in ". For that it is convenient to represent the function f(z) as the ratio

f(z) =

g(z)

g(z + i")

= g(z)

�1D g(z) , (4.30)

where we introduced the shift operator

D ⌘ e

i"@

. (4.31)

Then the weight factor Q
n

takes the form

Q
n

= e

��Dn

e

�

, �(z) = Q

w

(z)/g(z) , (4.32)

and the series in the exponent in (4.28) can be summed up to

A
u

[f ] =

⌧
exp

✓
1

"

I

C

dz

2⇡

: e

��(z)��(z) Li
2

(D) e�(z)+�(z)

:

◆�
, (4.33)

with the operator Li
2

(D) given by the dilogarithmic series

Li
2

(D) =
1X

n=1

Dn

n

2

. (4.34)

Here we extended the sum over n to infinity, which which can be done with exponential accuracy. The
function �(z), which we will refer to as “classical potential”, plays the role of classical expectation
value for the bosonic field �.

det(1�K) =

⌧
exp

1

"

I

C

dz

2⇡

W[�]

�
(4.35)

W[�] =: e

��(z)��(z) Li
2

(D) e�(z)+�(z)

: (4.36)

W [�] =

1

"

Li
2

(e

iP

) + i log(1� e

iP

) @� + . . . (4.37)

10

The weight for composite particles: 

One-dimensional Coulomb gas of dipoles in a common 
external potential  Φ(u)

Intuitive picture: non-ideal gas of dipoles

⌅

n

(z) = � 1

i"

e

�(z+in")��(z)

e

�(z+in")��(z)

n

2

, (4.21)

Q
n

(z) = Q(z)Q(z + i") . . .Q(z + in") = e

��(x)+�(x+ni") (4.22)
e

�(z+i")��(z)

= Q(z). (4.23)

⌅

n

(z) = �1

i

Q(z)Q(z + i) . . .Q(z + in)

n

2

e

�(z+in)��(z) (4.24)

(4.25)
e

�(z+i)��(z)

= Q(z). (4.26)

Q(z)Q(z + i) . . .Q(z + in) = e

�(z+in)��(z) (4.27)

Q(z) = e

�(z+i")��(x)

, �(z) =

NX

j=1

log(z � w

j

)� log

a(z)

d(z)

(4.28)

Q(z) = e

�(z+i)��(z)

, �(z) =

NX

j=1

log(z � w

j

)� log

a(z)

d(z)

(4.29)

As the spacing n" should be smaller than the cut-off length ⇤, from the perspective of the effective
infrared theory all these particles are point-like. We thus obtained that in the semi-classical limit the
A -functional is given, up to non-perturbative terms, by the expectation value

det(1�K) ⇡
*
exp

0

@1

"

⇤/"X

n=1

1

n

2

I

C

dz

2⇡

e

�(z+in")��(z)

e

�(z+in")��(z)

1

A
+
. (4.30)

det(1�K) ⇡
*
exp

 
⇤X

n=1

1

n

2

I

C

dz

2⇡

e

�(z+in)��(z)

e

�(z+in)��(z)

!+
. (4.31)

The effective potential can be given a nice operator form, which will be used to extract the pertur-
bative series in ". For that it is convenient to represent the function f(z) as the ratio

f(z) =

g(z)

g(z + i")

= g(z)

�1D g(z) , (4.32)

where we introduced the shift operator

D ⌘ e

i"@

. D ⌘ e

i@ (4.33)

Then the weight factor Q
n

takes the form

Q
n

= e

��Dn

e

�

, �(z) = Q

w

(z)/g(z) , (4.34)
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Claim: In the semi-classical limit of large L with N/L~1, the perturbative expansion  
in ε ~ 1/L is given by the expectation value for the slow component

Au[d/a] = h0| exp
 
� 1

i"

I

C

dx

2⇡i

1X

n=1

n

n2

: e��(x)��(x) e�(x+ni")+�(x+ni")
:

!
|0i

= h0| exp
✓
� 1

i"

I

C

dx

2⇡i
: e��(x)��(x) Li

2

(Di") e
�(x)+�(x)

:

◆
|0i .

(7.11)

Au,z ⇡
⌧
exp

✓
1

"

I

C

dx

2⇡
: e��(x)��(x) Li

2

(D" e
�(x)+�(x)

:

◆�
. (7.12)

Here we extended the sum over n to infinity, which can be done with exponential accuracy. The
effective IR theory, eqs. (7.9) or (7.12), is identical to the prediction from the cumulant expansion,
Eq. (4.25), after bosonization.

7.1 One-dimensional effective theory in the semiclassical limit

logAu,v =

F
0

"
+ F

1

+ "F
2

+ . . . (7.13)

+O(e�1/"
) (7.14)

In the effective field theory the meromorphic function �, which contains all the information about
the positions of the Bethe roots, appears as the classical part of the quantum field �. In the semiclas-
sical limit

~ ⌘ 1/L ! 0, ` ⌘ Li" ⇠ 1, ↵ = N/L ⇠ 1 (7.15)

the classical field � grows as 1/~, but

�(x+ ni")� �(x) = ni" @�(x) + · · · = ip(x) +O(i") (7.16)

remains finite. Also, in these conventions the range of integration and size of the contour C is of order
L0. Then the distribution of the roots uj is assumed to be of the form of the finite zone solutions of
the Bethe equations, which are described by hyperlliptic curves. The roots u condense into one or
several arcs, which become the cuts of the meromorphic function

@�(x) =
NX

j=1

1

x� uj
�

LX

l=1

1

x� zl
. (7.17)

We assume that the inhomogeneities z are centred around the origin of the rapidity plane, but we do
non make any other assumptions about them.

We will write the expectation value (7.12) as a path integral for the (0 + 1)-dimensional field
'(x) = @�(x) defined on the contour C and having two-point function

G(x, u) ⌘ h'(x)'(u) i = 1

(x� u)2
. (7.18)

The two-point function (7.18) can be imposed in the standard way by introducing a second field ⇢(x)
linearly coupled to the derivative field

'(x) = �@�(x). (7.19)

21

(     means 
“equal  
up to non-
perturbative 
terms)

Q(z)Q(z + i) . . .Q(z + in) = e

�(z+in)��(z) (4.27)

Q(z) = e

�(z+i")��(x)

, �(z) =

NX

j=1

log(z � w

j

)� log

a(z)

d(z)

(4.28)

Q(z) = e

�(z+i)��(x)

, �(z) =

NX

j=1

log(z � w

j

)� log

a(z)

d(z)

(4.29)

As the spacing n" should be smaller than the cut-off length ⇤, from the perspective of the effective
infrared theory all these particles are point-like. We thus obtained that in the semi-classical limit the
A -functional is given, up to non-perturbative terms, by the expectation value

det(1�K) ⇡
*
exp

0

@1

"

⇤/"X

n=1

1

n

2

I

C

dz

2⇡

e

�(z+in")��(z)

e

�(z+in")��(z)

1

A
+
. (4.30)

det(1�K) ⇡
*
exp

 
⇤X

n=1

1

n

2

I

C

dz

2⇡

e

�(z+in)��(z)

e

�(z+in)��(z)

!+
. (4.31)

The effective potential can be given a nice operator form, which will be used to extract the pertur-
bative series in ". For that it is convenient to represent the function f(z) as the ratio

f(z) =

g(z)

g(z + i")

= g(z)

�1D g(z) , (4.32)

where we introduced the shift operator

D ⌘ e

i"@

. (4.33)

Then the weight factor Q
n

takes the form

Q
n

= e

��Dn

e

�

, �(z) = Q

w

(z)/g(z) , (4.34)

and the series in the exponent in (4.31) can be summed up to

A
u

[f ] =

⌧
exp

✓
1

"

I

C

dz

2⇡

: e

��(z)��(z) Li
2

(D) e�(z)+�(z)

:

◆�
, (4.35)

with the operator Li
2

(D) given by the dilogarithmic series

Li
2

(D) =
1X

n=1

Dn

n

2

. (4.36)

Here we extended the sum over n to infinity, which which can be done with exponential accuracy. The
function �(z), which we will refer to as “classical potential”, plays the role of classical expectation
value for the bosonic field �.
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Operator form:

Semi-classical scalar products in the generalised SU(2) model 9

⌅

n

=

I V(z
1

) . . .V(z
n

)

(�i")

n

n!

nY

k=2

dz

k

2⇡i

⇠ (n� 1)!

n!

I Q
n

k=2

dzk
2⇡i

: V(z
1

) · · · V(z
n

) :

(i"� z

12

) . . . (i"� z

n�1,n

)(i"� z

n,1

)

= � 1

n

2

i"

V
n

(z) , (15)

where

V
n

(z) ⌘ : V(z)V(z + i") . . .V(z + ni") : = e

�(z+ni")��(z)

. (16)

The interaction potential of the effective coarse-grained theory therefore contains, besides the original
vertex operator V ⌘ V

1

, all composite vertex operators V
n

with n . ⇤. If one repeats the computation (15)
with the weights Q, one obtains for the n-th cumulant

⌅

n

(z) = � 1

i"

Q
n

(z)V
n

(z)

n

2

, Q
n

(z) = Q(z)Q(z + i") . . .Q(z + in"). (17)

⌅

n

(z) = � 1

i"

Q
n

(z)V
n

(z)

n

2

, Q
n

(z) = Q(z)Q(z + i") . . .Q(z + in") = e

��(x)+�(x+ni")

.(18)

As the spacing n" should be smaller than the cut-off length ⇤, from the perspective of the effective infrared
theory all these particles are point-like. We thus obtained that in the semi-classical limit the A -functional
is given, up to non-perturbative terms, by the expectation value

Au,z ⇡
*
exp

0

@1

"

⇤/"X

n=1

1

n

2

I

C

dz

2⇡

Q
n

(z)V
n

(z)

1

A
+
. (19)

The effective potential can be given a nice operator form, which will be used to extract the perturbative
series in ". For that it is convenient to represent the function f(z) as the ratio

f(z) =

g(z)

g(z + i")

= g(z)

�1D g(z) , (20)

where we introduced the shift operator

D ⌘ e

i"@

. (21)

Then the weight factor Q
n

takes the form

Q
n

= e

�� Dn

e

�

, exp�(z) = Qw(z)/g(z) , (22)

and the series in the exponent in (19) can be summed up to

Aw[f ] =

⌧
exp

✓
1

"

I

C

dz

2⇡

: e

��(z)��(z) Li
2

(D) e�(z)+�(z)

:

◆�
, (23)

with the operator Li
2

(D) given by the dilogarithmic series

Li
2

(D) =
1X

n=1

Dn

n

2

. (24)

Q(z)Q(z + i) . . .Q(z + in) = e

�(z+in)��(z) (4.27)

Q(z) = e

�(z+i")��(x)

, �(z) =

NX

j=1

log(z � w

j

)� log

a(z)

d(z)

(4.28)

Q(z) = e

�(z+i)��(x)

, �(z) =

NX

j=1

log(z � w

j

)� log

a(z)

d(z)

(4.29)

As the spacing n" should be smaller than the cut-off length ⇤, from the perspective of the effective
infrared theory all these particles are point-like. We thus obtained that in the semi-classical limit the
A -functional is given, up to non-perturbative terms, by the expectation value

det(1�K) ⇡
*
exp

0

@1

"

⇤/"X

n=1

1

n

2

I

C

dz

2⇡

e

�(z+in")��(z)

e

�(z+in")��(z)

1

A
+
. (4.30)

det(1�K) ⇡
*
exp

 
⇤X

n=1

1

n

2

I

C

dz

2⇡

e

�(z+in)��(z)

e

�(z+in)��(z)

!+
. (4.31)

The effective potential can be given a nice operator form, which will be used to extract the pertur-
bative series in ". For that it is convenient to represent the function f(z) as the ratio

f(z) =

g(z)

g(z + i")

= g(z)

�1D g(z) , (4.32)

where we introduced the shift operator

D ⌘ e

i"@

. D ⌘ e

i@ (4.33)

Then the weight factor Q
n

takes the form

Q
n

= e

��Dn

e

�

, �(z) = Q

w

(z)/g(z) , (4.34)

and the series in the exponent in (4.31) can be summed up to

A
u

[f ] =

⌧
exp

✓
1

"

I

C

dz

2⇡

: e

��(z)��(z) Li
2

(D) e�(z)+�(z)

:

◆�
, (4.35)

with the operator Li
2

(D) given by the dilogarithmic series

Li
2

(D) =
1X

n=1

Dn

n

2

. (4.36)

Here we extended the sum over n to infinity, which which can be done with exponential accuracy. The
function �(z), which we will refer to as “classical potential”, plays the role of classical expectation
value for the bosonic field �.
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det(1�K) =

⌧
exp

I

C

dz

2⇡

W[�]

�
W[�] = : e

��(z)��(z) Li
2

(D) e�(z)+�(z)

: (4.37)

W[�] =: e

��(z)��(z) Li
2

(D) e�(z)+�(z)

: (4.38)

W [�] =

1

"

Li
2

(e

iP

) + i log(1� e

iP

) @� + . . . (4.39)

P (u) = "@�(u), Q ⇡ e

iP (4.40)

log det(1�K) =

F

0

"

+ F

1

+ "F

2

+ · · ·+O(e

�⇤/"

) (4.41)

log det(1�K) = F

0

+ F

1

+ F

2

+ · · ·+O(e

�⇤

) F

n

⇠ L

1�n (4.42)

Here we added an experimentally found logarithmic term (by Kolya Gromov), still to be derived.

Remark 1. If we specify to the case of the (inhomogeneous, twisted) spin chain, considered in [12],
then f =  d/a with a, d given by (2.12). In this case the classical potential is

�(z) = logQ

w

(z)� logQ✓(z � i"/2). (4.43)

Remark 2. Going back to the fermion representation, we write the result as a Fredholm determi-
nant

A
w

[f ] ⇡ h0| exp
✓I

C

dz

2⇡i

e

��(z)

 

⇤
(z) log(1� D) (z)e�(z)

◆
|0i = Det(1� ˆK), (4.44)

where the Fredholm operator ˆK acts as

ˆK⇠(z) =
I

C

dz

1

2⇡i

ˆK(z, z

1

)⇠(z

1

),

ˆK(z, z

1

) =

1X

n=1

e

��(z)+�(z+i"n)

z � z

1

+ i"n

. (4.45)

The expression in terms of a Fredholm determinant can be obtained directly by performing the cumu-
lant expansion for the expression of the A -functional as a product of shift operators [9]

A [f ] =

1

 

w

[g]

NY

j=1

(1� e

i"@/@wj
)

NY

j=1

 

w

[g],

 

w

[g] =

Q
j<k

(w

j

� w

k

)

Q
N

j=1

g(w

j

)

, f(z) =

g(z)

g(z + i")

.

(4.46)
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det(1�K) =

⌧
exp

I

C

dz

2⇡

W[�]

�
W[�] = : e

��(z)��(z) Li
2

(D) e�(z)+�(z)

: (4.37)

W[�] =: e

��(z)��(z) Li
2

(D) e�(z)+�(z)

: (4.38)

W [�] =

1

"

Li
2

(e

iP

) + i log(1� e

iP

) @� + . . . (4.39)

P (u) = "@�(u), Q ⇡ e

iP (4.40)

log det(1�K) =

F

0

"

+ F

1

+ "F

2

+ · · ·+O(e

�⇤/"

) (4.41)

log det(1�K) = F

0

+ F

1

+ F

2

+ · · ·+O(e

�⇤

) F

n

⇠ L

1�n (4.42)

Here we added an experimentally found logarithmic term (by Kolya Gromov), still to be derived.

Remark 1. If we specify to the case of the (inhomogeneous, twisted) spin chain, considered in [12],
then f =  d/a with a, d given by (2.12). In this case the classical potential is

�(z) = logQ

w

(z)� logQ✓(z � i"/2). (4.43)

Remark 2. Going back to the fermion representation, we write the result as a Fredholm determi-
nant

A
w

[f ] ⇡ h0| exp
✓I

C

dz

2⇡i

e

��(z)

 

⇤
(z) log(1� D) (z)e�(z)

◆
|0i = Det(1� ˆK), (4.44)

where the Fredholm operator ˆK acts as

ˆK⇠(z) =
I

C

dz

1

2⇡i

ˆK(z, z

1

)⇠(z

1

),

ˆK(z, z

1

) =

1X

n=1

e

��(z)+�(z+i"n)

z � z

1

+ i"n

. (4.45)

The expression in terms of a Fredholm determinant can be obtained directly by performing the cumu-
lant expansion for the expression of the A -functional as a product of shift operators [9]

A [f ] =

1

 

w

[g]

NY

j=1

(1� e

i"@/@wj
)

NY

j=1

 

w

[g],

 

w

[g] =

Q
j<k

(w

j

� w

k

)

Q
N

j=1

g(w

j

)

, f(z) =

g(z)

g(z + i")

.

(4.46)
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Semiclassical expansion  

external 
potential tadpole

=       +      +      + …

Semi-Classical Scalar Products in the Generalised [2mm] SU(2) Model 11

where the double integral is understood as a principal value. The actual choice of the contour C is a subtle
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Returning to the scalar product and ignoring the trivial factors in (4), we find that the first two coefficients
of the semi-classical expansion are given by eqs. (35) and (36) with

Q = e

ipu+ipv
. (37)

5 Discussion

In these notes we reviewed the field-theoretical approach to the computation of scalar products of on-
shell/off-shell Bethe vectors in the generalised model with SU(2) rational R-matrix, which leads to a
systematic procedure for computing the semi-classical expansion. The results reported here represent a
slight generalisation if those already reported in [12–14]. We hope that the field-theoretical method could
be used to compute scalar products in integrable models associated with higher rank groups, using the fact
that the integrands in the multiple contour integrals of in [7–10] is expressed as products of A -functionals.

The problem considered here is formally similar to the problem of computing the instanton partition
functions in N = 1 and N = 2 SYM [33–35]. As a matter of fact, the scalar product in the form (12) is
the grand-canonical version of the partition function of the N = 1 SUSY in four dimensions, which was
studied in a different large N limit in [39].

Our main motivation was the computation of the three-point function of heavy operators in N = 4

four-dimensional SYM. Such operators are dual to classical strings in AdS

5

⇥ S

5 and can be compared
with certain limit of the string-theory results. For a special class of three-point functions, the semi-classical
expansion is readily obtained from that of the scalar product. The leading term F

0

should be obtained on
the string theory side as the classical action of a minimal world sheet with three prescribed singularities.
The comparison with the recent computation in [38] looks very encouraging. We expect that the meaning
of the subleading term on the string theory side is that it takes account of the gaussian fluctuations around
the minimal world sheet. In this context it would be interesting to obtain the subleading order of the heavy-
heavy-light correlation function in the su(2) sector in string theory [40–42]. In the near-plane-wave limit
the subleading order was obtained in [43].
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Here we added an experimentally found logarithmic term (by Kolya Gromov), still to be derived.

Remark 1. If we specify to the case of the (inhomogeneous, twisted) spin chain, considered in [12],
then f =  d/a with a, d given by (2.12). In this case the classical potential is
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The expression in terms of a Fredholm determinant can be obtained directly by performing the cumu-
lant expansion for the expression of the A -functional as a product of shift operators [9]
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The potential contains a constant term, which gives the leading contribution to the free energy, a tadpole of
order 1 and higher vertices that disappears in the limit " ! 0. The Feynman rules for the effective action
Y[', ⇢] are such that each given order in " is obtained as a sum of finite number of Feynman graphs. For
the first two orders one obtains
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where the double integral is understood as a principal value. The actual choice of the contour C is a subtle
issue and depends on the analytic properties of the function Q(x). The contour shold be placed in such
away that it does not cross the cuts of the integrand.
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Fig. 2 Feynman rules for the effective field theory

Fig. 3 The leading and the subleading orders of the vacuum energy

Returning to the scalar product and ignoring the trivial factors in (4), we find that the first two coefficients
of the semi-classical expansion are given by eqs. (35) and (36) with
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The potential contains a constant term, which gives the leading contribution to the free energy, a
tadpole of order 1 and higher vertices that disappears in the limit " ! 0. The Feynman rules for the
effective action Y[', ⇢] are such that each given order in " is obtained as a sum of finite number of
Feynman graphs.
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where the double integral is understood as a principal value. In terms of the gas of dipole charges, the
leading term corresponds to the dilute gas approximation, in which the charges interact only with the
external potential, while the sub-leading second term takes into account the pairwise interactions. This
interpretation requires that the function ⇢(x)/2⇡i gives the equilibrium density of the dipole charges.

In the derivation we did not use the particular form of the potential and the result holds for any
reasonable function f(x). The actual choice of the contour C is a subtle issue and depends on the
analytic properties of the function Q(x). The contour shold be placed in such away that it does not
cross the cuts of the integrand.

Returning to the scalar product and ignoring the trivial factors in (A.17), we find that the first two
coefficients of the semi-classical expansion are given by eqs. (4.55) and (6.4) with
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and the contour C circling around both sets of roots u and v and avoiding the poles of f .
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The contribution of the double pole gives a pure derivative and does not contribute to the integral.
So we are not obliged to impose the principal value prescription. We can nevertheless subtract
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The integral then takes an explicity regular form
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where the double integral is understood as a principal value. The actual choice of the contour C is a subtle
issue and depends on the analytic properties of the function Q(x). The contour shold be placed in such
away that it does not cross the cuts of the integrand.

Fig. 2 Feynman rules for the effective field theory
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Fig. 3 The leading and the subleading orders of the vacuum energy

Returning to the scalar product and ignoring the trivial factors in (4), we find that the first two coefficients
of the semi-classical expansion are given by eqs. (35) and (36) with

Q = 1� e

ipu+ipv
. (37)

Leading term 
(known)

Subleading 
term (new)

[Gromov, Sever, Vieira 2011, 
IK’2012]

The potential contains a constant term, which gives the leading contribution to the free energy, a
tadpole of order 1 and higher vertices that disappears in the limit " ! 0. The Feynman rules for the
effective action Y[', ⇢] are such that each given order in " is obtained as a sum of finite number of
Feynman graphs.
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where the double integral is understood as a principal value. In terms of the gas of dipole charges, the
leading term corresponds to the dilute gas approximation, in which the charges interact only with the
external potential, while the sub-leading second term takes into account the pairwise interactions. This
interpretation requires that the function ⇢(x)/2⇡i gives the equilibrium density of the dipole charges.

In the derivation we did not use the particular form of the potential and the result holds for any
reasonable function f(x). The actual choice of the contour C is a subtle issue and depends on the
analytic properties of the function Q(x). The contour shold be placed in such away that it does not
cross the cuts of the integrand.

Returning to the scalar product and ignoring the trivial factors in (A.17), we find that the first two
coefficients of the semi-classical expansion are given by eqs. (4.55) and (6.4) with

Q = 1� e

ipu+ipv (4.57)

and the contour C circling around both sets of roots u and v and avoiding the poles of f .
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The contribution of the double pole gives a pure derivative and does not contribute to the integral.
So we are not obliged to impose the principal value prescription. We can nevertheless subtract
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The integral then takes an explicity regular form
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The first two terms of the semiclassical expansion  

• for the scalar product < u|v > :
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where the double integral is understood as a principal value. The actual choice of the contour C is a subtle
issue and depends on the analytic properties of the function Q(x). The contour should be placed in such
away that it does not cross the cuts of the integrand.
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Fig. 2 Feynman rules for the effective field theory
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Fig. 3 The leading and the subleading orders of the vacuum energy

Returning to the scalar product and ignoring the trivial factors in (4), we find that the first two coefficients
of the semi-classical expansion are given by eqs. (36) and (37) with

Q = e

ipu+ipv
. (38)

5 Discussion

In these notes we reviewed the field-theoretical approach to the computation of scalar products of on-
shell/off-shell Bethe vectors in the generalised model with SU(2) rational R-matrix, which leads to a
systematic procedure for computing the semi-classical expansion. The results reported here represent a
slight generalisation if those already reported in [12–14]. We hope that the field-theoretical method could
be used to compute scalar products in integrable models associated with higher rank groups, using the fact
that the integrands in the multiple contour integrals of in [7–10] is expressed as products of A -functionals.

The problem considered here is formally similar to the problem of computing the instanton partition
functions in N = 1 and N = 2 SYM [33–35]. As a matter of fact, the scalar product in the form (12) is
the grand-canonical version of the partition function of the N = 1 SUSY in four dimensions, which was
studied in a different large N limit in [39].

Our main motivation was the computation of the three-point function of heavy operators in N = 4

four-dimensional SYM. Such operators are dual to classical strings in AdS

5

⇥ S

5 and can be compared
with certain limit of the string-theory results. For a special class of three-point functions, the semi-classical
expansion is readily obtained from that of the scalar product. The leading term F

0

should be obtained on
the string theory side as the classical action of a minimal world sheet with three prescribed singularities.
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1 A useful representation (bosonization) of the Izergin-Korepin deter-
minant

The domain wall partition function, DWPF, is the partition function of the six-vertex model on a
square grid with domain wall boundary conditions, DWBC [1,2]. The weights depend on the rapidity
variables w = {w

1

, . . . , wN} and z = {z
1

, . . . , zN}, associated respectively with the horizontal and
with the vertical lines. As shown by Izergin [3, 4], the DWPF can be expressed, up to a factor which
can be eliminated by a renormalization of the six-vertex weights, as a determinant1

Zw,z =

detjk t(wj � zk)

detjk
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wj�zk+"
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u
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We can write the determinant as
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uj � zk
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where functional A "
u,z is defined as
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where �u denotes the Vandermonde determinant

�u
def
=

Y
j<k

(uj � uk). (1.4)

The last line of (1.3), obtained after using the Cauchy identity, allows to define the functional
A "

u,z for any two sets of rapidities w = {w
1

, . . . , wN} and z = {z
1

, . . . , zL}. The functional A "
u,z

evaluates the so called PDWPF, which is obtained from the DWPF by taking part of the rapidities to
be equal to part of the inhomogeneities [7].

1 For the first time the ratio of determinants (1.1) appeared in the works of M. Gaudin [5, 6] as the scalar product of two
Bethe wave functions for a Bose gas with point-like interaction on an infinite line.
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The path integral reads

A [i",]
u,z =

Z
[D'D⇢] e�Y[',⇢] , (7.20)

with the action functional
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The i"-expansion of the potential depends on the argument � through its derivatives, so it is a local
functional of ' and its derivatives:
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The potential contains a constant term, which gives the dominant contribution to the free energy, a
tadpole of order 1 and higher vertices that disappears in the limit i" ! 0. Therefore, if we will
concentrate on the leading term (of order 1/i") and ignore the corrections that vanish in the limit
i" ! 0, the subleading term (of order 1), the action in the path integral can be approximated by a
gaussian. The double integral in the second term can be understood as a principal value. Indeed, the
contribution ⇢⇢0 of the pole at x = u is pure derivative and vanishes after being contour-integrated.
Up to O("), we obtain

logAu,z = �1
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2
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where the double integral is understood as a principal value. In terms of the gas of dipole charges, the
leading term corresponds to the dilute gas approximation, in which the charges interact only with the
external potential, while the sub-leading second term takes into account the pairwise interactions.

The choice of the contour C is a subtle issue and depends on the analytic properties of the function
Q(x). A general rescription is that it should not cross cuts of G(x).

In the derivation we did not use the particular form of the potential and the result holds for any
reasonable function f(x). Then we should choose Q as

Q(x) = f(x) lim

i"!0

Qu(x+ i")

Qu(x)
. (7.25)
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Figure 1: An example of the distributions
u and v for N = 50, each consisting of a
single macroscopic Bethe string.

����

��� �

Figure 2: The cuts Cu and Cv and the inte-
gration contours Au and Av for the one-cut
solution of Fig. 1.

4 Classical limit

In this section we will find the classical limit of the inner product (2.27). The classical limit is achieved
when L,N ! 1 with ↵ = N/L finite, and some additional assumptions on the distribution of the
rapidities u

N

and v
N

. In the condensed matter literature the classical limit, in which each Bethe
string has macroscopic number of particles, has been studied by Sutherland [34] and by Dhar and
Shastry [54]. In this regime the roots u condense along a curve Cu in the rapidity plane, consisting of
several connected components Cu1 , . . . , Cun , with u1 [ . . .u

n

= u, symmetric about the real axis,
with slowly varying linear density ⇢u(u) [12]. The curve Ck

u contains N
k

= #u
k

particles,
Z

C

k
u

⇢(u)du = N
k

, N1 + · · ·+N
n

= N. (4.1)

We assume that the filling fractions ↵
k

= N
k

/L associated with the cuts C
k

remain finite when
L ! 1. Then the size of each curve is ⇠ L. We assume a similar behavior for the rapidities v. An
example of distributions u and v with N = 50 and n = 1 is given in Fig. 1.

In the classical limit, the arguments U and V in Eq. (3.17) become c-functions, and the inner
product factorizes to

Su,v = (�1)

N A +
v [ eiGu�iG✓

] A �
u [eiGv

] , (4.2)

where

Gu(u) = @
u

logQu(u), Gv(u) = @
u

logQv(u), G✓(u) = @
u

logQ✓(u) (4.3)

are the resolvents associated respectively with the sets u, v and ✓. The resolvent Gu(u) is a meromor-
phic function of u with cuts C1

u, . . . , C
n

u and asymptotics N/u at infinity. The discontinuity across
the cuts is proportional to the density ⇢u(u).
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Remark 1: Subtleties concerning the integration contour

Infinitely many “resonance points” where argument of Li(Q) =1 and the integrand has 
logarithmic branch points.  Is it possible to place the contour  far from all these points?
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• Prescription for the contour:

With this prescription the contour integral for the leading term matches the numerical fit 
(with M=1, …, 60, M/L= 16) with accuracy 12 digits [N. Gromov, unpublished]
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Conclusion
• The scalar product < u|v > depends in an universal way on the sum of 

the quasi-momenta of the two states 

where the polynomial Q✓ is defined as1

Q✓(x) =
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(x� ✓

l

), ✓ = {✓
1

, . . . , ✓

L

}. (2.14)

a(u) = (u+ i/2)

L (2.15)
d(u) = (u� i/2)

L (2.16)

Any Bethe state is completely characterised by its pseudo-momentum, known also under the name
of counting function [17]
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The Bethe equations (2.8), which are formulated in terms of the pseudo-momentum as

e

2ip(uj)
+ 1 = 0 (j = 1, . . . ,M), (2.18)

imply that the p(z) takes value ⇡n
j

at z = u

j

, where n
j

is an integer. Thus each solution of the Bethe
equations is characterised by a set of integers n = {n

1

, . . . , n

N

} called mode numbers.

u ! "u, " = 1/L (2.19)
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3 Determinant formulas for the inner product

In order to expand the states |vi with given a set of rapidities in the basis of eigenvectors |ui of the
monodromy matrix,

|vi =
X

u on shell

hu|v i |ui, (3.1)

1This is a particular case of the Drinfeld polynomial P1(u) when all spins along the chain are equal to 1
2 .

4

• Unexpectedly simple expression for the first two terms of the semi-classical expansion 
          (checked numerically with high precision)

Unclear points:

• Why there is no contribution from the “resonance points”              ? 

where the polynomial Q✓ is defined as1

Q✓(x) =

LY

l=1

(x� ✓

l

), ✓ = {✓
1

, . . . , ✓

L

}. (2.14)

a(u) = (u+ i/2)

L (2.15)
d(u) = (u� i/2)

L (2.16)

Any Bethe state is completely characterised by its pseudo-momentum, known also under the name
of counting function [17]

2ip(u) = log

Q

u

(u+ i")

Q

u

(u� i")

� log

a(u

j

)

d(u

j

)

+ log . (2.17)

The Bethe equations (2.8), which are formulated in terms of the pseudo-momentum as

e

2ip(uj)
+ 1 = 0 (j = 1, . . . ,M), (2.18)

imply that the p(z) takes value ⇡n
j

at z = u

j

, where n
j

is an integer. Thus each solution of the Bethe
equations is characterised by a set of integers n = {n

1

, . . . , n

N

} called mode numbers.

u ! "u, " = 1/L (2.19)

u = {u
1

, . . . , u

L

} (2.20)
v = {v

1

, . . . , v

L2} (2.21)
w = {w

1

, . . . , w

L3} (2.22)

a(u) = (u+

1

2

i")

L

, d(u) = (u� 1

2

i")

L (2.23)

p

w

= p

u

+ p

v

(2.24)

u = �

n

p

u

(�

n

) + p

v

(�

n

) = 2⇡n, n 2 Z (2.25)

3 Determinant formulas for the inner product

In order to expand the states |vi with given a set of rapidities in the basis of eigenvectors |ui of the
monodromy matrix,

|vi =
X

u on shell

hu|v i |ui, (3.1)

1This is a particular case of the Drinfeld polynomial P1(u) when all spins along the chain are equal to 1
2 .

4

where the polynomial Q✓ is defined as1

Q✓(x) =

LY

l=1

(x� ✓

l

), ✓ = {✓
1

, . . . , ✓

L

}. (2.14)

a(u) = (u+ i/2)

L (2.15)
d(u) = (u� i/2)

L (2.16)

Any Bethe state is completely characterised by its pseudo-momentum, known also under the name
of counting function [17]

2ip(u) = log

Q

u

(u+ i")

Q

u

(u� i")

� log

a(u

j

)

d(u

j

)

+ log . (2.17)

The Bethe equations (2.8), which are formulated in terms of the pseudo-momentum as

e

2ip(uj)
+ 1 = 0 (j = 1, . . . ,M), (2.18)

imply that the p(z) takes value ⇡n
j

at z = u

j

, where n
j

is an integer. Thus each solution of the Bethe
equations is characterised by a set of integers n = {n

1

, . . . , n

N

} called mode numbers.

u ! "u, " = 1/L (2.19)

u = {u
1

, . . . , u

L

} (2.20)
v = {v

1

, . . . , v

L2} (2.21)
w = {w

1

, . . . , w

L3} (2.22)

a(u) = (u+

1

2

i")

L

, d(u) = (u� 1

2

i")

L (2.23)

p

w

= p

u

+ p

v

(2.24)

u = �

n

p

u

(�

n

) + p

v

(�

n

) = 2⇡n, n 2 Z (2.25)

3 Determinant formulas for the inner product

In order to expand the states |vi with given a set of rapidities in the basis of eigenvectors |ui of the
monodromy matrix,

|vi =
X

u on shell

hu|v i |ui, (3.1)

1This is a particular case of the Drinfeld polynomial P1(u) when all spins along the chain are equal to 1
2 .

4

!
(cf  the semiclassical form factors in the quasi-periodic sine-Gordon [F. Smirnov’98]) 

• The semi-classical expression does not seem to be symmetric under exchanging rapidities and 
inhomogeneities.  Why?

• How to obtain the same result from the SoV representation of the scalar product

[Kazama, Komatsu, Nishimura’2013, ???]

We still have to compute the overlaps with the vacuum. If they are indeed only normalization con-
stants, then
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7.1 Baker-Achieser function

˜

�(u) =

I

u[{u}

dz

2⇡

Li
2

(e

iP (z)+

i
z�u

)�
I

u

du

2⇡

Li
2

(e

iP (z)

)

=

I

u[{u}

dz

2⇡i

1

z � u

log(1� e

iP (z)

)

= log(1� e

iP (u)

) +

I

C

dz

2⇡

1

z � u

log(1� e

iP (z)

),

(7.10)

˜

 (u) = (1�Q(u)) exp

✓I

C

dz

2⇡

1

z � u

log(1� e

iP (z)

)

◆
(7.11)

8 Discussion

In these notes we reviewed a new technique for computing the scalar products of on-shell/off-shell
Bethe vectors in the generalised model with su(2) rational R-matrix, which is particularly efficient in
the thermodynamical limit. The results reported here represent a slight generalisation if those already
reported in [9, 11, 12]. Note that there is a close analogy between the above semiclassical analysis
and the computation of the instanton partition functions of four-dimensional N = 2 supersymmetric
gauge theories in the so-called ⌦-background, characterised by two deformation parameters, "

1

and
"

2

[31] [25], in the Nekrasov-Shatashvili limit "
2

! 0 [32]. In this limit the result is expressed in terms
of the solution of a non-linear integral equation. The derivation, outlined in [32] and explained in great
detail in the recent papers [33, 34], is based on the iterated Mayer expansion for a one-dimensional
non-ideal gas. Our method is a field-theoretical alternative of the the Mayer expansion of the gas of
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• XXZ??


