Recent Advances in Quantum Integrable Systems

Université de Bourgogne Dijon, France

September 2014

On the completeness of solutions of Bethe's equations

Rafael I. Nepomechie University of Miami

1304.7978 + Chunguang Wang

1308.4645 + Wenrui Hao & Andrew Sommese 1312.2982

spin-1/2 periodic XXX chain:

$$H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - 1) , \qquad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1$$

spin-1/2 periodic XXX chain:

$$H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - 1) , \qquad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1$$

$$H|\lambda_1,\ldots,\lambda_M\rangle=E|\lambda_1,\ldots,\lambda_M\rangle$$

spin-1/2 periodic XXX chain:

$$H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - 1) , \qquad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1$$

$$H|\lambda_1,\ldots,\lambda_M\rangle=E|\lambda_1,\ldots,\lambda_M\rangle$$

spin-I/2 periodic XXX chain:

$$H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - 1) , \qquad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1$$

$$H|\lambda_1,\ldots,\lambda_M\rangle=E|\lambda_1,\ldots,\lambda_M\rangle$$

$$|\lambda_1,\ldots,\lambda_M\rangle=\prod_{k=1}^M B(\lambda_k)|0\rangle \qquad |0\rangle=\begin{pmatrix}1\\0\end{pmatrix}^{\otimes N} \qquad \text{Bethe states}$$

spin-1/2 periodic XXX chain:

$$H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - 1) , \qquad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1$$

$$H|\lambda_1,\ldots,\lambda_M\rangle=E|\lambda_1,\ldots,\lambda_M\rangle$$

$$E = -\frac{1}{2} \sum_{k=1}^{M} \frac{1}{\lambda_k^2 + \frac{1}{4}} \qquad |\lambda_1, \dots, \lambda_M\rangle = \prod_{k=1}^{M} B(\lambda_k) |0\rangle \qquad |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\otimes N} \qquad \text{Bethe states}$$

spin-I/2 periodic XXX chain:

$$H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - 1) , \qquad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1$$

$$H|\lambda_1,\ldots,\lambda_M\rangle=E|\lambda_1,\ldots,\lambda_M\rangle$$

$$E = -\frac{1}{2} \sum_{k=1}^{M} \frac{1}{\lambda_k^2 + \frac{1}{4}} \qquad |\lambda_1, \dots, \lambda_M\rangle = \prod_{k=1}^{M} B(\lambda_k) |0\rangle \qquad |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\otimes N} \qquad \text{Bethe states}$$

$$\left(\lambda_k + \frac{i}{2}\right)^N \prod_{\substack{j \neq k \\ j = 1}}^M (\lambda_k - \lambda_j - i) = \left(\lambda_k - \frac{i}{2}\right)^N \prod_{\substack{j \neq k \\ j = 1}}^M (\lambda_k - \lambda_j + i),$$
 Bethe equations (BE)

spin-I/2 periodic XXX chain:

$$H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - 1) , \qquad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1$$

$$H|\lambda_1,\ldots,\lambda_M\rangle=E|\lambda_1,\ldots,\lambda_M\rangle$$

algebraic Bethe ansatz:

$$E = -\frac{1}{2} \sum_{k=1}^{M} \frac{1}{\lambda_k^2 + \frac{1}{4}} \qquad |\lambda_1, \dots, \lambda_M\rangle = \prod_{k=1}^{M} B(\lambda_k) |0\rangle \qquad |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\otimes N} \qquad \text{Bethe states}$$

$$\left(\lambda_k + \frac{i}{2}\right)^N \prod_{\substack{j \neq k \\ j = 1}}^M (\lambda_k - \lambda_j - i) = \left(\lambda_k - \frac{i}{2}\right)^N \prod_{\substack{j \neq k \\ j = 1}}^M (\lambda_k - \lambda_j + i),$$

$$k = 1, 2, \dots, M, \qquad M = 0, 1, \dots, \frac{N}{2}$$
Bethe equations (BE)

Are solutions "complete"?

i.e. too few, too many, or just right?

spin-I/2 periodic XXX chain:

$$H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - 1) , \qquad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1$$

$$H|\lambda_1,\ldots,\lambda_M\rangle=E|\lambda_1,\ldots,\lambda_M\rangle$$

algebraic Bethe ansatz:

$$E = -\frac{1}{2} \sum_{k=1}^{M} \frac{1}{\lambda_k^2 + \frac{1}{4}} \qquad |\lambda_1, \dots, \lambda_M\rangle = \prod_{k=1}^{M} B(\lambda_k) |0\rangle \qquad |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\otimes N} \qquad \text{Bethe states}$$

$$\left(\lambda_k + \frac{i}{2}\right)^N \prod_{\substack{j \neq k \\ j = 1}}^M (\lambda_k - \lambda_j - i) = \left(\lambda_k - \frac{i}{2}\right)^N \prod_{\substack{j \neq k \\ j = 1}}^M (\lambda_k - \lambda_j + i),$$

$$k = 1, 2, \dots, M, \qquad M = 0, 1, \dots, \frac{N}{2}$$
Bethe equations (BE)

Are solutions "complete"?

i.e. too few, too many, or just right?

• Singular solutions: physical & unphysical

- Singular solutions: physical & unphysical
- Completeness/Pauli-principle conjecture

- Singular solutions: physical & unphysical
- Completeness/Pauli-principle conjecture
- Homotopy continuation

- Singular solutions: physical & unphysical
- Completeness/Pauli-principle conjecture
- Homotopy continuation
- Solving the T-Q equation

- Singular solutions: physical & unphysical
- Completeness/Pauli-principle conjecture
- Homotopy continuation
- Solving the T-Q equation
- Results

- Singular solutions: physical & unphysical
- Completeness/Pauli-principle conjecture
- Homotopy continuation
- Solving the T-Q equation
- Results
- Integrable spin s > 1/2

- Singular solutions: physical & unphysical
- Completeness/Pauli-principle conjecture
- Homotopy continuation
- Solving the T-Q equation
- Results
- Integrable spin s > 1/2
- Conclusions

Example:
$$(\lambda_1, \lambda_2) = (\frac{i}{2}, -\frac{i}{2})$$

Example:
$$(\lambda_1, \lambda_2) = (\frac{i}{2}, -\frac{i}{2})$$

$$\left(\lambda_1 + \frac{i}{2}\right)^N (\lambda_1 - \lambda_2 - i) = \left(\lambda_1 - \frac{i}{2}\right)^N (\lambda_1 - \lambda_2 + i)$$

$$\left(\lambda_2 + \frac{i}{2}\right)^N (\lambda_2 - \lambda_1 - i) = \left(\lambda_2 - \frac{i}{2}\right)^N (\lambda_2 - \lambda_1 + i)$$

an exact solution of BE for any value of N

Example:
$$(\lambda_1, \lambda_2) = (\frac{i}{2}, -\frac{i}{2})$$

exact 2-string centered at origin

Example:
$$(\lambda_1, \lambda_2) = (\frac{i}{2}, -\frac{i}{2})$$

exact 2-string centered at origin

I. Energy is singular:
$$E = -\frac{1}{2} \sum_{k=1}^{2} \frac{1}{\lambda_k^2 + \frac{1}{4}} \sim \frac{1}{0}$$
 ???

Example:
$$(\lambda_1, \lambda_2) = (\frac{\imath}{2}, -\frac{\imath}{2})$$

exact 2-string centered at origin

I. Energy is singular:
$$E = -\frac{1}{2} \sum_{k=1}^{2} \frac{1}{\lambda_{k}^{2} + \frac{1}{4}} \sim \frac{1}{0}$$
 ???

2. Bethe vector is singular:
$$B(\lambda_1)B(\lambda_2)|0\rangle \sim \frac{0}{0}$$
 ???

$$T_a(\lambda) = R_{Na}(\lambda) \cdots R_{1a}(\lambda) = \begin{pmatrix} A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda) \end{pmatrix} \qquad R_{na}(\lambda) = \frac{1}{(\lambda + \frac{i}{2})} \left[(\lambda - \frac{i}{2}) \mathbb{I}_{na} + i \mathcal{P}_{na} \right]$$

Example:
$$(\lambda_1, \lambda_2) = (\frac{i}{2}, -\frac{i}{2})$$

exact 2-string centered at origin

I. Energy is singular:
$$E = -\frac{1}{2} \sum_{k=1}^{2} \frac{1}{\lambda_{k}^{2} + \frac{1}{4}} \sim \frac{1}{0}$$
 ???

2. Bethe vector is singular:
$$B(\lambda_1)B(\lambda_2)|0\rangle \sim \frac{0}{0}$$
 ???

$$T_a(\lambda) = R_{Na}(\lambda) \cdots R_{1a}(\lambda) = \begin{pmatrix} A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda) \end{pmatrix} \quad R_{na}(\lambda) = \frac{1}{(\lambda + \frac{i}{2})} \left[(\lambda - \frac{i}{2}) \mathbb{I}_{na} + i \mathcal{P}_{na} \right]$$

Try naive regulator:

$$\lambda_1^{\text{naive}} = \frac{\imath}{2} + \epsilon \,,$$

$$\lambda_1^{\text{naive}} = \frac{i}{2} + \epsilon, \qquad \lambda_2^{\text{naive}} = -\frac{i}{2} + \epsilon$$

Example:
$$(\lambda_1, \lambda_2) = (\frac{i}{2}, -\frac{i}{2})$$

exact 2-string centered at origin

I. Energy is singular:
$$E = -\frac{1}{2} \sum_{k=1}^{2} \frac{1}{\lambda_{k}^{2} + \frac{1}{4}} \sim \frac{1}{0}$$
 ???

2. Bethe vector is singular:
$$B(\lambda_1)B(\lambda_2)|0\rangle \sim \frac{0}{0}$$
 ???

$$T_a(\lambda) = R_{Na}(\lambda) \cdots R_{1a}(\lambda) = \begin{pmatrix} A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda) \end{pmatrix} \quad R_{na}(\lambda) = \frac{1}{(\lambda + \frac{i}{2})} \left[(\lambda - \frac{i}{2}) \mathbb{I}_{na} + i \mathcal{P}_{na} \right]$$

Try naive regulator:

$$\lambda_1^{\text{naive}} = \frac{\imath}{2} + \epsilon \,,$$

$$\lambda_1^{\mathrm{naive}} = rac{i}{2} + \epsilon \,, \qquad \lambda_2^{\mathrm{naive}} = -rac{i}{2} + \epsilon \,$$

$$\lim_{\epsilon \to 0} E = -1 \qquad \checkmark$$

Example:
$$(\lambda_1, \lambda_2) = (\frac{i}{2}, -\frac{i}{2})$$

exact 2-string centered at origin

I. Energy is singular:
$$E = -\frac{1}{2} \sum_{k=1}^{2} \frac{1}{\lambda_{k}^{2} + \frac{1}{4}} \sim \frac{1}{0}$$
 ???

2. Bethe vector is singular:
$$B(\lambda_1)B(\lambda_2)|0\rangle \sim \frac{0}{0}$$
 ???

$$T_a(\lambda) = R_{Na}(\lambda) \cdots R_{1a}(\lambda) = \begin{pmatrix} A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda) \end{pmatrix} \quad R_{na}(\lambda) = \frac{1}{(\lambda + \frac{i}{2})} \left[(\lambda - \frac{i}{2}) \mathbb{I}_{na} + i \mathcal{P}_{na} \right]$$

$$\lambda_1^{\mathrm{naive}} = \frac{\imath}{2} + \epsilon \,,$$

Try naive regulator:
$$\lambda_1^{
m naive}=rac{i}{2}+\epsilon\,, \qquad \lambda_2^{
m naive}=-rac{i}{2}+\epsilon\,$$

$$\lim_{\epsilon \to 0} E = -1 \qquad \checkmark$$

$$\lim_{\epsilon \to 0} B(\lambda_1^{\text{naive}}) B(\lambda_2^{\text{naive}}) |0\rangle = \text{finite} \quad \checkmark$$

Example:
$$(\lambda_1, \lambda_2) = (\frac{i}{2}, -\frac{i}{2})$$

exact 2-string centered at origin

I. Energy is singular:
$$E=-\frac{1}{2}\sum_{k=1}^2\frac{1}{\lambda_k^2+\frac{1}{4}}\sim\frac{1}{0} \quad ???$$

2. Bethe vector is singular:
$$B(\lambda_1)B(\lambda_2)|0\rangle \sim \frac{0}{0}$$
 ???

$$T_a(\lambda) = R_{Na}(\lambda) \cdots R_{1a}(\lambda) = \begin{pmatrix} A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda) \end{pmatrix} \quad R_{na}(\lambda) = \frac{1}{(\lambda + \frac{i}{2})} \left[(\lambda - \frac{i}{2}) \mathbb{I}_{na} + i \mathcal{P}_{na} \right]$$

Try naive regulator:

$$\lambda_1^{\text{naive}} = \frac{\imath}{2} + \epsilon \,,$$

$$\lambda_1^{\text{naive}} = \frac{i}{2} + \epsilon \,, \qquad \lambda_2^{\text{naive}} = -\frac{i}{2} + \epsilon$$

$$\lim_{\epsilon \to 0} E = -1 \qquad \checkmark$$

$$\lim_{\epsilon \to 0} B(\lambda_1^{\text{naive}}) B(\lambda_2^{\text{naive}}) |0\rangle = \text{finite} \quad \checkmark$$

... but it is not an eigenvector (e.g. for N=4) ???

$$\lambda_1 = \frac{i}{2} + \epsilon + c \epsilon^N$$
 $\lambda_2 = -\frac{i}{2} + \epsilon$,

[Avdeev, Vladimirov 85; Beisert, Minahan, Staudacher, Zarembo 03]

$$\lambda_1 = \frac{i}{2} + \epsilon + c \epsilon^N$$
 $\lambda_2 = -\frac{i}{2} + \epsilon$,

How to determine c?

[Avdeev, Vladimirov 85; Beisert, Minahan, Staudacher, Zarembo 03]

$$\lambda_1 = \frac{i}{2} + \epsilon + c \epsilon^N$$
 $\lambda_2 = -\frac{i}{2} + \epsilon$,

How to determine c:

[Avdeev, Vladimirov 85; Beisert, Minahan, Staudacher, Zarembo 03]

$$\lambda_1 = \frac{i}{2} + \epsilon + c \epsilon^N$$
 $\lambda_2 = -\frac{i}{2} + \epsilon$,

$$\lambda_2 = -\frac{\imath}{2} + \epsilon \,,$$

How to determine c:

transfer matrix
$$t(\lambda) = \operatorname{tr}_a T_a(\lambda) = A(\lambda) + D(\lambda)$$

[Avdeev, Vladimirov 85; Beisert, Minahan, Staudacher, Zarembo 03]

$$\lambda_1 = \frac{i}{2} + \epsilon + c \epsilon^N$$
 $\lambda_2 = -\frac{i}{2} + \epsilon$,

How to determine c:

algebraic Bethe ansatz

transfer matrix $t(\lambda) = \operatorname{tr}_a T_a(\lambda) = A(\lambda) + D(\lambda)$ off-shell:

$$t(\lambda)|\lambda_1,\ldots,\lambda_M\rangle = \Lambda(\lambda)|\lambda_1,\ldots,\lambda_M\rangle + \sum_{k=1}^M F_k(\lambda,\{\lambda\})B(\lambda)\prod_{j\neq k}^M B(\lambda_j)|0\rangle$$

$$\lambda_1 = \frac{i}{2} + \epsilon + c \epsilon^N$$
 $\lambda_2 = -\frac{i}{2} + \epsilon$,

How to determine c:

algebraic Bethe ansatz

transfer matrix $t(\lambda) = \operatorname{tr}_a T_a(\lambda) = A(\lambda) + D(\lambda)$ off-shell:

$$t(\lambda)|\lambda_1,\ldots,\lambda_M\rangle = \Lambda(\lambda)|\lambda_1,\ldots,\lambda_M\rangle + \sum_{k=1}^M F_k(\lambda,\{\lambda\})B(\lambda)\prod_{j\neq k}^M B(\lambda_j)|0\rangle$$

"wanted"

[Avdeev, Vladimirov 85; Beisert, Minahan, Staudacher, Zarembo 03]

$$\lambda_1 = \frac{i}{2} + \epsilon + c \epsilon^N$$
 $\lambda_2 = -\frac{i}{2} + \epsilon$,

How to determine c:

algebraic Bethe ansatz

transfer matrix $t(\lambda) = \operatorname{tr}_a T_a(\lambda) = A(\lambda) + D(\lambda)$ off-shell:

$$t(\lambda)|\lambda_1,\ldots,\lambda_M\rangle = \Lambda(\lambda)|\lambda_1,\ldots,\lambda_M\rangle + \sum_{k=1}^M F_k(\lambda,\{\lambda\})B(\lambda)\prod_{j\neq k}^M B(\lambda_j)|0\rangle$$

"unwanted"

$$F_k(\lambda, \{\lambda\}) = \frac{i}{\lambda - \lambda_k} \left[\prod_{j \neq k}^M \left(\frac{\lambda_k - \lambda_j - i}{\lambda_k - \lambda_j} \right) - \left(\frac{\lambda_k - \frac{i}{2}}{\lambda_k + \frac{i}{2}} \right)^N \prod_{j \neq k}^M \left(\frac{\lambda_k - \lambda_j + i}{\lambda_k - \lambda_j} \right) \right]$$

$$F_k(\lambda, \{\lambda\}) = 0 \Leftrightarrow \mathsf{BE}$$

$$\lambda_1 = \frac{i}{2} + \epsilon + c \epsilon^N, \qquad \lambda_2 = -\frac{i}{2} + \epsilon,$$

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N} \,, \qquad B(\lambda_1) \sim 1$$

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N}, \qquad B(\lambda_1) \sim 1 \qquad \qquad R_{na}(\lambda) = \frac{1}{(\lambda + \frac{i}{2})} \left[(\lambda - \frac{i}{2}) \mathbb{I}_{na} + i \mathcal{P}_{na} \right]$$

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N} \,, \qquad B(\lambda_1) \sim 1$$

$$B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N} \,, \qquad B(\lambda_1) \sim 1$$

$$B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

$$F_2(\lambda, \{\lambda\}) \sim \epsilon$$

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N}, \qquad B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

"generalized Bethe equations"

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N}, \qquad B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

"generalized Bethe equations"

$$F_1(\lambda, \{\lambda\}) = \left(\frac{c + 2i^{-(N+1)}}{\lambda - \frac{i}{2}}\right) \epsilon^N + O(\epsilon^{N+1}), \quad F_2(\lambda, \{\lambda\}) = \left(\frac{2i - i^{-N}c}{\lambda + \frac{i}{2}}\right) + O(\epsilon)$$

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N}, \qquad B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

"generalized Bethe equations"

$$F_1(\lambda, \{\lambda\}) = \left(\underbrace{\frac{c + 2i^{-(N+1)}}{\lambda - \frac{i}{2}}}\right) \epsilon^N + O(\epsilon^{N+1}), \quad F_2(\lambda, \{\lambda\}) = \underbrace{\left(\underbrace{\frac{2i - i^{-N}c}{\lambda + \frac{i}{2}}}\right)}_{\equiv 0} + O(\epsilon)$$

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N}, \qquad B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

"generalized Bethe equations"

$$F_1(\lambda, \{\lambda\}) = \left(\underbrace{\frac{c + 2i^{-(N+1)}}{\lambda - \frac{i}{2}}}\right) \epsilon^N + O(\epsilon^{N+1}), \quad F_2(\lambda, \{\lambda\}) = \underbrace{\left(\frac{2i - i^{-N}c}{\lambda + \frac{i}{2}}\right)}_{\equiv 0} + O(\epsilon)$$

N even: $c = 2i(-1)^{N/2}$

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N}, \qquad B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

"generalized Bethe equations"

$$F_1(\lambda, \{\lambda\}) = \left(\underbrace{\frac{c + 2i^{-(N+1)}}{\lambda - \frac{i}{2}}}\right) \epsilon^N + O(\epsilon^{N+1}), \quad F_2(\lambda, \{\lambda\}) = \underbrace{\left(\frac{2i - i^{-N}c}{\lambda + \frac{i}{2}}\right)}_{\equiv 0} + O(\epsilon)$$

N even: $c = 2i(-1)^{N/2}$

N odd: no solution for c!

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N}, \qquad B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

"generalized Bethe equations"

$$F_1(\lambda, \{\lambda\}) = \left(\underbrace{\frac{c + 2i^{-(N+1)}}{\lambda - \frac{i}{2}}}\right) \epsilon^N + O(\epsilon^{N+1}), \quad F_2(\lambda, \{\lambda\}) = \underbrace{\left(\frac{2i - i^{-N}c}{\lambda + \frac{i}{2}}\right)}_{\equiv 0} + O(\epsilon)$$

N odd: no solution for c!

Although $\pm i/2$ satisfies BE, does NOT correspond to eigenstate of $t(\lambda)$!

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N\,, \qquad \lambda_2=-\frac{i}{2}+\epsilon\,,$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N}, \qquad B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

"generalized Bethe equations"

$$F_1(\lambda, \{\lambda\}) = \left(\underbrace{\frac{c + 2i^{-(N+1)}}{\lambda - \frac{i}{2}}}\right) \epsilon^N + O(\epsilon^{N+1}), \quad F_2(\lambda, \{\lambda\}) = \underbrace{\left(\frac{2i - i^{-N}c}{\lambda + \frac{i}{2}}\right)}_{\equiv 0} + O(\epsilon)$$

 $\equiv 0$ N even: $c = 2i(-1)^{N/2}$

N odd: no solution for c!

unphysical singular solution

Although $\pm i/2$ satisfies BE, does NOT correspond to eigenstate of $t(\lambda)$!

$$M=2$$
:

$$M=2:$$
 $\lambda_1=\frac{i}{2}+\epsilon+c\,\epsilon^N, \qquad \lambda_2=-\frac{i}{2}+\epsilon,$

$$\lambda_2 = -\frac{i}{2} + \epsilon$$

$$t(\lambda)|\lambda_1,\lambda_2\rangle = \Lambda(\lambda)|\lambda_1,\lambda_2\rangle + F_1(\lambda,\{\lambda\})B(\lambda_2)B(\lambda)|0\rangle + F_2(\lambda,\{\lambda\})B(\lambda_1)B(\lambda)|0\rangle$$

$$B(\lambda_2) \sim \frac{1}{\epsilon^N}, \qquad B(\lambda_1) \sim 1$$

Need

$$F_1(\lambda, \{\lambda\}) \sim \epsilon^{N+1}, \qquad F_2(\lambda, \{\lambda\}) \sim \epsilon$$

"generalized Bethe equations"

$$F_1(\lambda, \{\lambda\}) = \left(\underbrace{\frac{c + 2i^{-(N+1)}}{\lambda - \frac{i}{2}}}\right) \epsilon^N + O(\epsilon^{N+1}), \quad F_2(\lambda, \{\lambda\}) = \left(\underbrace{\frac{2i - i^{-N}c}{\lambda + \frac{i}{2}}}\right) + O(\epsilon)$$

$$\equiv 0$$
N even: $c = 2i(-1)^{N/2}$
physical singular solution

physical singular solution

N odd: no solution for c!

unphysical singular solution

Although $\pm i/2$ satisfies BE, does NOT correspond to eigenstate of $t(\lambda)$!

$$\{\frac{i}{2}, -\frac{i}{2}, \lambda_3, \dots, \lambda_M\}$$

$$\{\frac{i}{2}, -\frac{i}{2}, \lambda_3, \dots, \lambda_M\}$$
 $\lambda_3, \dots, \lambda_M$ distinct $\neq \pm \frac{i}{2}$

$$\{rac{i}{2},-rac{i}{2},\lambda_3,\ldots,\lambda_M\}$$

$$\lambda_3 \,, \ldots \,, \lambda_M \quad \mathsf{distinct} \quad
eq \pm rac{i}{2}$$

$$\left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}}\right)^{N-1} \left(\frac{\lambda_k - \frac{3i}{2}}{\lambda_k + \frac{3i}{2}}\right) = \prod_{\substack{j \neq k \\ i=3}}^{M} \frac{\lambda_k - \lambda_j + i}{\lambda_k - \lambda_j - i}, \qquad k = 3, \dots, M.$$

$$\{\frac{i}{2},-\frac{i}{2},\lambda_3,\ldots,\lambda_M\}$$

$$\lambda_3 \ , \ldots \ , \lambda_M \quad \mathsf{distinct} \quad
eq \pm rac{i}{2}$$

$$\left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}}\right)^{N-1} \left(\frac{\lambda_k - \frac{3i}{2}}{\lambda_k + \frac{3i}{2}}\right) = \prod_{\substack{j \neq k \\ j=3}}^{M} \frac{\lambda_k - \lambda_j + i}{\lambda_k - \lambda_j - i}, \qquad k = 3, \dots, M.$$

Regularization + generalized Bethe equations \Rightarrow

$$c = -\frac{2}{i^{N+1}} \prod_{j=3}^{M} \frac{\lambda_j - \frac{3i}{2}}{\lambda_j + \frac{i}{2}}, \qquad c = 2i^{N+1} \prod_{j=3}^{M} \frac{\lambda_j + \frac{3i}{2}}{\lambda_j - \frac{i}{2}}$$

$$\{\frac{i}{2}, -\frac{i}{2}, \lambda_3, \dots, \lambda_M\}$$

$$\{rac{i}{2},-rac{i}{2},\lambda_3,\ldots,\lambda_M\}$$
 $\lambda_3,\ldots,\lambda_M$ distinct $eq \pm rac{i}{2}$

$$\left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}}\right)^{N-1} \left(\frac{\lambda_k - \frac{3i}{2}}{\lambda_k + \frac{3i}{2}}\right) = \prod_{\substack{j \neq k \\ j=3}}^{M} \frac{\lambda_k - \lambda_j + i}{\lambda_k - \lambda_j - i}, \qquad k = 3, \dots, M.$$

Regularization + generalized Bethe equations \Rightarrow

$$c = -\frac{2}{i^{N+1}} \prod_{j=3}^{M} \frac{\lambda_j - \frac{3i}{2}}{\lambda_j + \frac{i}{2}}, \qquad c = 2i^{N+1} \prod_{j=3}^{M} \frac{\lambda_j + \frac{3i}{2}}{\lambda_j - \frac{i}{2}}$$

Consistency \Rightarrow

$$\left[-\prod_{k=3}^{M} \left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}} \right) \right]^N = 1$$

 $\left[-\prod_{k=3}^{M} \left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}} \right) \right]^T = 1$ Condition for the singular solution to be physical

 $\mathcal{N}(N,M) \equiv \text{\# solutions } \{\lambda_1,\ldots,\lambda_M\} \text{ of BE with finite pairwise distinct roots}$

 $\mathcal{N}(N,M) \equiv \#$ solutions $\{\lambda_1,\ldots,\lambda_M\}$ of BE with finite pairwise distinct roots =

 $\mathcal{N}(N,M) \equiv \#$ solutions $\{\lambda_1,\ldots,\lambda_M\}$ of BE with finite pairwise distinct roots = ?

Bethe states are SU(2) highest-weight states:

$$S^{+}|\lambda_{1}, \dots, \lambda_{M}\rangle = 0, \qquad S^{\pm} = S^{x} \pm iS^{y}$$
 $\vec{S} = \frac{1}{2} \sum_{n=1}^{N} \vec{\sigma}_{n}$

 $\mathcal{N}(N,M) \equiv \#$ solutions $\{\lambda_1,\ldots,\lambda_M\}$ of BE with finite pairwise distinct roots =

Bethe states are SU(2) highest-weight states:

$$S^{+}|\lambda_{1}, \dots, \lambda_{M}\rangle = 0, \qquad S^{\pm} = S^{x} \pm iS^{y}$$
 $\vec{S} = \frac{1}{2} \sum_{n=1}^{N} \vec{\sigma}_{n}$

 \implies spin $s = \frac{N}{2} - M$

 $\mathcal{N}(N,M) \equiv \#$ solutions $\{\lambda_1\,,\dots\,,\lambda_M\}$ of BE with finite pairwise distinct roots =

Bethe states are SU(2) highest-weight states:

$$S^{+}|\lambda_{1}, \dots, \lambda_{M}\rangle = 0, \qquad S^{\pm} = S^{x} \pm iS^{y}$$
 $\vec{S} = \frac{1}{2} \sum_{n=1}^{N} \vec{\sigma}_{n}$

$$\implies$$
 spin $s = \frac{N}{2} - M$

Expected values of s (and hence M) and their multiplicities from Clebsch-Gordan:

 $\mathcal{N}(N,M) \equiv \#$ solutions $\{\lambda_1,\ldots,\lambda_M\}$ of BE with finite pairwise distinct roots

Bethe states are SU(2) highest-weight states:

$$S^{+}|\lambda_{1}, \dots, \lambda_{M}\rangle = 0, \qquad S^{\pm} = S^{x} \pm iS^{y}$$
 $\vec{S} = \frac{1}{2} \sum_{n=1}^{N} \vec{\sigma}_{n}$

 \Rightarrow spin $s = \frac{N}{2} - M$

Expected values of s (and hence M) and their multiplicities from Clebsch-Gordan:

$$\underbrace{\frac{\mathbf{1}}{\mathbf{2}}\otimes\cdots\otimes\frac{\mathbf{1}}{\mathbf{2}}}_{N}=\bigoplus_{s=0}^{rac{N}{2}}n_{s}\mathbf{s}$$

$$n_s = {N \choose \frac{N}{2} - s} - {N \choose \frac{N}{2} - s - 1}$$
 multiplicity of spin s rep

 $\mathcal{N}(N,M) \equiv \#$ solutions $\{\lambda_1,\ldots,\lambda_M\}$ of BE with finite pairwise distinct roots = ?

Bethe states are SU(2) highest-weight states:

$$S^{+}|\lambda_{1}, \dots, \lambda_{M}\rangle = 0, \qquad S^{\pm} = S^{x} \pm iS^{y}$$
 $\vec{S} = \frac{1}{2} \sum_{n=1}^{N} \vec{\sigma}_{n}$

 \implies spin $s = \frac{N}{2} - M$

Expected values of s (and hence M) and their multiplicities from Clebsch-Gordan:

$$\underbrace{\frac{1}{2}\otimes\cdots\otimes\frac{1}{2}}_{N}=\underbrace{\bigoplus_{s=0}^{rac{N}{2}}}_{s=0}n_{s}\mathbf{s}$$

$$n_s = {N \choose \frac{N}{2} - s} - {N \choose \frac{N}{2} - s - 1}$$
 multiplicity of spin s rep

$$M = 0, 1, \dots, \frac{N}{2}$$

 $\mathcal{N}(N,M) \equiv \#$ solutions $\{\lambda_1,\ldots,\lambda_M\}$ of BE with finite pairwise distinct roots

Bethe states are SU(2) highest-weight states:

$$S^{+}|\lambda_{1}, \dots, \lambda_{M}\rangle = 0, \qquad S^{\pm} = S^{x} \pm iS^{y}$$
 $\vec{S} = \frac{1}{2} \sum_{n=1}^{N} \vec{\sigma}_{n}$

$$\implies$$
 spin $s = \frac{N}{2} - M$

Expected values of s (and hence M) and their multiplicities from Clebsch-Gordan:

$$\underbrace{\frac{1}{2} \otimes \cdots \otimes \frac{1}{2}}_{N} = \bigoplus_{s=0}^{\frac{N}{2}} n_{s} \mathbf{s}$$

$$n_s = \left(\begin{array}{c} N \\ \frac{N}{2} - s \end{array}\right) - \left(\begin{array}{c} N \\ \frac{N}{2} - s \end{array}\right)$$
 multiplicity of spin s rep

multiplicity of

$$\mathcal{N}(N,M) \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$$
 # solutions with M pairwise distinct roots

$$\mathcal{N}(N,M) \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$$

 $\mathcal{N}(N,M) \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$ # solutions with M pairwise distinct roots

Wrong!

Assumes (incorrectly) that every solution of BE with pairwise distinct roots produces eigenstate of $t(\lambda)$

$$\mathcal{N}(N,M) \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$$
 # solutions with M pairwise distinct roots

solutions with M

Wrong!

Assumes (incorrectly) that every solution of BE with pairwise distinct roots produces eigenstate of $t(\lambda)$

BE admit singular solutions, of which only the physical ones produce eigenstates of $t(\lambda)$

$$\mathcal{N}(N,M) \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$$

 $\mathcal{N}(N,M) \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$ # solutions with M pairwise distinct roots

Wrong!

Assumes (incorrectly) that every solution of BE with pairwise distinct roots produces eigenstate of $t(\lambda)$

BE admit singular solutions, of which only the physical ones produce eigenstates of $t(\lambda)$

Our conjecture:

$$\mathcal{N}(N,M) - \mathcal{N}_s(N,M) + \mathcal{N}_{sp}(N,M) = \binom{N}{M} - \binom{N}{M-1}$$

$$\mathcal{N}_s(N,M) \equiv \# \text{ singular solutions}$$

$$\mathcal{N}_{sp}(N,M)\equiv$$
 # singular solutions that are physical

$$\left[-\prod_{k=3}^{M} \left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}} \right) \right]^N = 1$$

$$\mathcal{N}(N,M) \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$$

 $\mathcal{N}(N,M) \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$ # solutions with M pairwise distinct roots

Wrong!

Assumes (incorrectly) that every solution of BE with pairwise distinct roots produces eigenstate of $t(\lambda)$

BE admit singular solutions, of which only the physical ones produce eigenstates of $t(\lambda)$

Our conjecture:

$$\mathcal{N}(N,M) - \mathcal{N}_s(N,M) + \mathcal{N}_{sp}(N,M) = \binom{N}{M} - \binom{N}{M-1}$$

 $\mathcal{N}_s(N,M) \equiv \# \text{ singular solutions}$

$$\mathcal{N}_{sp}(N,M)\equiv$$
 # singular solutions that are physical

$$\left[-\prod_{k=3}^{M} \left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}} \right) \right]^N = 1$$

Physical meaning: BE have "too many" solutions. But, after discarding unphysical singular solutions, remain with just right #

I. For every highest-weight eigenstate of $t(\lambda)$, there exists a solution of BE with pairwise distinct roots

- I. For every highest-weight eigenstate of $t(\lambda)$, there exists a solution of BE with pairwise distinct roots
- 2. For every solution of BE with pairwise distinct roots (that, if singular, is also physical), there is a highest-weight eigenstate of $t(\lambda)$

- I. For every highest-weight eigenstate of $t(\lambda)$, there exists a solution of BE with pairwise distinct roots
- 2. For every solution of BE with pairwise distinct roots (that, if singular, is also physical), there is a highest-weight eigenstate of $t(\lambda)$

Previous studies have focused only on 1.

- I. For every highest-weight eigenstate of $t(\lambda)$, there exists a solution of BE with pairwise distinct roots
- 2. For every solution of BE with pairwise distinct roots (that, if singular, is also physical), there is a highest-weight eigenstate of $t(\lambda)$

Previous studies have focused only on 1.

To check conjecture, must find ALL solutions of BE with pairwise distinct roots.

For N>5, brute force is not an option...

Homotopy continuation

Homotopy continuation

Toy example:

Want to solve $x^2 - 5x + 6 = 0$

Homotopy continuation

Toy example:

Want to solve
$$x^2 - 5x + 6 = 0$$

Start from a problem whose solutions we know $x^2 - 1 = 0$ system, and deform it to the problem that we want to solve.

Toy example:

Want to solve
$$x^2 - 5x + 6 = 0$$

Start from a problem whose solutions we know $x^2-1=0$ "start system" and deform it to the problem that we want to solve:

$$H(x,t) \equiv (1-t)(x^2-5x+6)+t(x^2-1)$$
 "homotopy"

& consider
$$H(x,t)=0$$
 $0 \le t \le 1$

Toy example:

Want to solve
$$x^2 - 5x + 6 = 0$$

Start from a problem whose solutions we know $x^2-1=0$ "start system" and deform it to the problem that we want to solve:

$$H(x,t) \equiv (1-t)(x^2-5x+6) + t(x^2-1)$$
 "homotopy"

& consider
$$H(x,t) = 0$$
 $0 \le t \le 1$

Toy example:

Want to solve
$$x^2 - 5x + 6 = 0$$

Start from a problem whose solutions we know $x^2-1=0$ system and deform it to the problem that we want to solve:

$$H(x,t) \equiv (1-t)(x^2-5x+6) + t(x^2-1)$$
 "homotopy"

& consider
$$H(x,t)=0$$
 $0 \le t \le 1$

Toy example:

Want to solve
$$x^2 - 5x + 6 = 0$$

Start from a problem whose solutions we know $x^2-1=0$ "start system" and deform it to the problem that we want to solve:

$$H(x,t) \equiv (1-t)(x^2-5x+6) + t(x^2-1)$$
 "homotopy"

& consider
$$H(x,t)=0$$
 $0 \le t \le 1$

$$t = 1: \quad x = \pm 1$$

Toy example:

Want to solve
$$x^2 - 5x + 6 = 0$$

Start from a problem whose solutions we know $x^2-1=0$ "start system" and deform it to the problem that we want to solve:

$$H(x,t) \equiv (1-t)(x^2-5x+6)+t(x^2-1)$$
 "homotopy"

& consider
$$H(x,t) = 0$$
 $0 \le t \le 1$

$$t = 1: \quad x = \pm 1$$

$$\frac{dH}{dt} = \frac{\partial H}{\partial x}\frac{dx}{dt} + \frac{\partial H}{\partial t} = 0$$

Toy example:

Want to solve $x^2 - 5x + 6 = 0$

"start Start from a problem whose solutions we know $x^2 - 1 = 0$ system" and deform it to the problem that we want to solve:

$$H(x,t) \equiv (1-t)(x^2-5x+6)+t(x^2-1)$$
 "homotopy"

& consider H(x,t) = 0 $0 \le t \le 1$

$$t = 1: \quad x = \pm 1$$

$$\frac{dH}{dt} = \frac{\partial H}{\partial x}\frac{dx}{dt} + \frac{\partial H}{\partial t} = 0$$

Toy example:

Want to solve $x^2 - 5x + 6 = 0$

"start Start from a problem whose solutions we know $x^2 - 1 = 0$ system" and deform it to the problem that we want to solve:

$$H(x,t) \equiv (1-t)(x^2-5x+6)+t(x^2-1)$$
 "homotopy"

& consider
$$H(x,t) = 0$$
 $0 \le t \le 1$

$$t = 1: \quad x = \pm 1$$

$$\frac{dH}{dt} = \frac{\partial H}{\partial x}\frac{dx}{dt} + \frac{\partial H}{\partial t} = 0$$

Toy example:

Want to solve $x^2 - 5x + 6 = 0$

"start Start from a problem whose solutions we know $x^2 - 1 = 0$ system" and deform it to the problem that we want to solve:

$$H(x,t) \equiv (1-t)(x^2-5x+6)+t(x^2-1)$$
 "homotopy"

& consider
$$H(x,t)=0$$
 $0 \le t \le 1$

$$0 \le t \le 1$$

$$t = 1: \quad x = \pm 1$$

$$\frac{dH}{dt} = \frac{\partial H}{\partial x}\frac{dx}{dt} + \frac{\partial H}{\partial t} = 0$$

Get
$$x=3,2$$

$$f_M(\lambda_1, ..., \lambda_M) = 0$$

Bezout bound: # finite solutions is at most

$$D \equiv deg(f_1) \cdot deg(f_2) \cdot \cdot \cdot deg(f_M)$$

$$f_M(\lambda_1, ..., \lambda_M) = 0$$

•

Bezout bound: # finite solutions is at most

$$f_M(\lambda_1, ..., \lambda_M) = 0$$

$$D \equiv deg(f_1) \cdot deg(f_2) \cdot \cdot \cdot deg(f_M)$$

By choosing start system with D solutions ("total degree" homotopy), can find all the solutions

•

Bezout bound: # finite solutions is at most

$$f_M(\lambda_1, ..., \lambda_M) = 0$$

$$D \equiv deg(f_1) \cdot deg(f_2) \cdot \cdot \cdot deg(f_M)$$

By choosing start system with D solutions ("total degree" homotopy), can find all the solutions

Various software packages are available - highly parallelizable!

•

Bezout bound: # finite solutions is at most

$$f_M(\lambda_1, ..., \lambda_M) = 0$$

$$D \equiv deg(f_1) \cdot deg(f_2) \cdot \cdot \cdot deg(f_M)$$

By choosing start system with D solutions ("total degree" homotopy), can find all the solutions

Various software packages are available - highly parallelizable!

We used "Bertini" on a cluster (176 cores) to solve BE up to N=14, M=7 (1.2 hour)

•

Bezout bound:

$$f_M(\lambda_1, ..., \lambda_M) = 0$$

finite solutions is at most

$$D \equiv deg(f_1) \cdot deg(f_2) \cdots deg(f_M)$$

By choosing start system with D solutions ("total degree" homotopy), can find all the solutions

Various software packages are available - highly parallelizable!

We used "Bertini" on a cluster (176 cores) to solve BE up to N=14, M=7 (1.2 hour)

Start system: $\lambda_k^{N+M-2} = 1$ k = 1, 2, ..., M

Bezout bound:

$$f_M(\lambda_1, ..., \lambda_M) = 0$$

finite solutions is at most

$$D \equiv deg(f_1) \cdot deg(f_2) \cdot \cdot \cdot deg(f_M)$$

By choosing start system with D solutions ("total degree" homotopy), can find all the solutions

Various software packages are available - highly parallelizable!

We used "Bertini" on a cluster (176 cores) to solve BE up to N=14, M=7 (1.2 hour)

Start system:

$$\lambda_k^{N+M-2} = 1$$

$$k = 1, 2, ..., M$$

$$\Rightarrow$$

$$\lambda_k = \omega^{j_k}, \qquad \omega = e^{2\pi i/(N+M-2)}, \qquad j_k = 0, 1, \dots, N+M-3$$

$$j_k = 0, 1, \cdots, N + M - 3$$

Bezout bound:

$$f_M(\lambda_1, ..., \lambda_M) = 0$$

finite solutions is at most

$$D \equiv deg(f_1) \cdot deg(f_2) \cdot \cdot \cdot deg(f_M)$$

By choosing start system with D solutions ("total degree" homotopy), can find all the solutions

Various software packages are available - highly parallelizable!

We used "Bertini" on a cluster (176 cores) to solve BE up to N=14, M=7 (1.2 hour)

Start system:
$$\lambda_k^{N+M-2} = 1$$

$$k = 1, 2, ..., M$$

$$\lambda_k = \omega^{j_k}, \qquad \omega = e^{2\pi i/(N+M-2)}, \qquad j_k = 0, 1, \dots, N+M-3$$

$$j_k = 0, 1, \cdots, N + M - 3$$

Want distinct roots, so can restrict

$$0 \le j_1 < j_2 < j_3 < \dots < j_M \le N + M - 3$$

N=8, M=4:

number		Bethe roots $\{\lambda_k\}$	
1	$\pm \ 0.5250121022236669$	$\pm \ 0.1294729463749287$	
2	0.5570702385744416	0.1470126111961413	$-0.3520414248852914 \pm 0.5005581696433306I$
3*	$\pm 0.5I$	$-0.2930497652740115 \pm 0.5002695484553508I$	
4*	$\pm~0.5I$	0.09053461122303935	0.4866819617430914
5*	$\pm~0.5I$	-0.04929340793103601 + 1.631134975618312 I	$-0.2430919428911911 - 0.06188079036780695 \mathrm{I}$
6*	$\pm~0.5I$	0.6439488581706157 - 0.1197616885579488I	$0.05986712277687283 + 1.57171694471433 \mathrm{I}$
7*	$\pm~0.5I$	$0.04929340793103601 + 1.631134975618312 \mathrm{I}$	0.2430919428911911 0.06188079036780695 I
8**	$\pm~0.5I$	$\pm\ 0.5638252623934961$	
9	0.2205600072920844	-0.6691229228815117	$0.2242814577947136 \pm 1.002247276506607I$
10*	$\pm~0.5I$	0.1695810016454493	-0.522716443014433
11*	$\pm~0.5I$	$-0.05986712277687283 + 1.57171694471433 \mathrm{I}$	-0.6439488581706157 - 0.1197616885579488 I
12*	$\pm~0.5I$	1.653144833689466I	-0.050307293346599I
13*	$\pm~0.5I$	0.522716443014433	-0.1695810016454493
14*	$\pm~0.5I$	0.050307293346599I	-1.653144833689466I
15*	$\pm 0.5I$	-0.4866819617430914	-0.09053461122303935
16*	$\pm 0.5I$	0.04929340793103601 1.631134975618312 I	0.2430919428911911 + 0.06188079036780695 I
17*	$\pm 0.5I$	$0.2930497652740115 \pm 0.5002695484553508I$	
18**	$\pm 0.5I$	$\pm\ 0.1424690678305666$	
19**	$\pm 0.5I$	$\pm\ 1.556126503577051I$	
20*	$\pm 0.5I$	3.517084291308099I	1.508105736964082I
21	0.2443331937711654	-0.08378710739142802	$-0.08027304318986867 \pm 1.005588273959932I$
22*	$\pm 0.5I$	0.05986712277687283 - 1.57171694471433I	0.6439488581706157 + 0.1197616885579488I
23	0.1211861779691729	-0.5716111771864383	$0.2252124996086327 \pm 0.5000288621635332I$
24		$\pm 0.4632647275890309 \pm 0.5022938535699026I$	
25	-0.14701261111961413	-0.5570702385744416	$0.3520414248852914 \pm 0.5005581696433306I$
26*	$\pm 0.5I$	$-0.05986712277687283 - 1.57171694471433 \mathrm{I}$	-0.6439488581706157 + 0.1197616885579488I
27	0.08378710739142802	-0.2443331937711654	$0.08027304318986867 \pm 1.005588273959932I$
28*	± 0.5I	-0.2430919428911911 + 0.06188079036780695I	-0.04929340793103601 - 1.631134975618312 I
29	$\pm 1.025705081230743I$	$\pm \ 0.0413091275245562$	
30*	± 0.5I	-1.508105736964082I	-3.517084291308099I
31	0.5716111771864383	-0.1211861779691729	$-0.2252124996086327 \pm 0.5000288621635332I$
32	-0.2205600072920844	0.6691229228815117	$-0.2242814577947136 \pm 1.002247276506607I$

** singular physical

^{*} singular unphysical

N=8, M=4:

number		Bethe roots $\{\lambda_k\}$	
1	± 0.5250121022236669	$\pm\ 0.1294729463749287$	
2	0.5570702385744416	0.1470126111961413	$-0.3520414248852914 \pm 0.5005581696433306I$
3*	$\pm~0.5\mathrm{I}$	$-0.2930497652740115 \pm 0.5002695484553508I$	
4*	$\pm~0.5\mathrm{I}$	0.09053461122303935	0.4866819617430914
5*	$\pm~0.5\mathrm{I}$	-0.04929340793103601 + 1.631134975618312I	$-0.2430919428911911 - 0.06188079036780695 \mathrm{I}$
6*	$\pm~0.5\mathrm{I}$	0.6439488581706157 - 0.1197616885579488I	0.05986712277687283 + 1.57171694471433I
7*	+ 0.51	0.04929340793103601 + 1.631134975618312I	$0.2430919428911911 0.06188079036780695 \hbox{I}$
8**	$\pm~0.5I$	$\pm\ 0.5638252623934961$	
9	0.2205600072920844	-0.6691229228815117	$0.2242814577947136 \pm 1.002247276506607I$
10*	$\pm 0.5I$	0.1695810016454493	-0.522716443014433
11*	$\pm~0.5I$	$-0.05986712277687283 + 1.57171694471433 \mathrm{I}$	$-0.6439488581706157 - 0.1197616885579488 \mathrm{I}$
12*	$\pm~0.5\mathrm{I}$	1.653144833689466I	-0.050307293346599I
13*	$\pm~0.5I$	0.522716443014433	-0.1695810016454493
14*	$\pm~0.5\mathrm{I}$	0.050307293346599I	-1.653144833689466I
15*	$\pm~0.5\mathrm{I}$	-0.4866819617430914	-0.09053461122303935
16*	$\pm~0.5\mathrm{I}$	$0.04929340793103601 1.631134975618312 \mathrm{I}$	0.2430919428911911 + 0.06188079036780695I
17*	<u>+ 0.5I</u>	$0.2930497652740115 \pm 0.5002695484553508I$	
18**	$\pm~0.5\mathrm{I}$	$\pm\ 0.1424690678305666$	
19**	$\pm~0.5\mathrm{I}$	$\pm\ 1.556126503577051 \mathrm{I}$	
20*	$\pm~0.5\mathrm{I}$	3.517084291308099I	$1.508105736964082\mathrm{I}$
21	0.2443331937711654	-0.08378710739142802	$-0.08027304318986867 \pm 1.005588273959932I$
22*	$\pm~0.5\mathrm{I}$	$0.05986712277687283 \hbox{-} 1.57171694471433 \mathrm{I}$	0.6439488581706157 + 0.1197616885579488I
23	0.1211861779691729	-0.5716111771864383	$0.2252124996086327 \pm 0.5000288621635332I$
24		$\pm 0.4632647275890309 \pm 0.5022938535699026I$	
25	-0.1470126111961413	-0.5570702385744416	$0.3520414248852914 \pm 0.5005581696433306I$
26*	$\pm~0.5I$	$-0.05986712277687283 - 1.57171694471433 \mathrm{I}$	-0.6439488581706157 + 0.1197616885579488I
27	0.08378710739142802	-0.2443331937711654	$0.08027304318986867 \pm 1.005588273959932I$
28*	$\pm~0.5\mathrm{I}$	-0.2430919428911911 + 0.06188079036780695 I	$-0.04929340793103601 - 1.631134975618312 \mathrm{I}$
29	$\pm\ 1.025705081230743$ I	$\pm\ 0.0413091275245562$	
30*	$\pm~0.5\mathrm{I}$	-1.508105736964082I	-3.517084291308099I
31	0.5716111771864383	-0.1211861779691729	$-0.2252124996086327 \pm 0.5000288621635332I$
32	-0.2205600072920844	0.6691229228815117	$-0.2242814577947136 \pm 1.002247276506607I$

** singular physical

^{*} singular unphysical

The eigenvalues $\Lambda(\lambda)$ of $t(\lambda)$ are polynomials

$$\Lambda(\lambda) = \sum_{j=0}^{N} T_j \lambda^j$$

and satisfy

$$\Lambda(\lambda) Q(\lambda) = \left(\lambda + \frac{i}{2}\right)^N Q(\lambda - i) + \left(\lambda - \frac{i}{2}\right)^N Q(\lambda + i)$$

$$Q(\lambda) = \prod_{m=1}^{M} (\lambda - \lambda_m) = \sum_{j=0}^{M} Q_j \lambda^j, \qquad Q_M = 1$$

The eigenvalues $\Lambda(\lambda)$ of $t(\lambda)$ are polynomials

$$\Lambda(\lambda) = \sum_{j=0}^{N} T_j \lambda^j \tag{1}$$

and satisfy

$$\Lambda(\lambda) Q(\lambda) = \left(\lambda + \frac{i}{2}\right)^N Q(\lambda - i) + \left(\lambda - \frac{i}{2}\right)^N Q(\lambda + i)$$
 (2)

$$Q(\lambda) = \prod_{m=1}^{M} (\lambda - \lambda_m) = \sum_{j=0}^{M} Q_j \lambda^j, \qquad Q_M = 1$$
(3)

Can solve (2) numerically for both $\Lambda(\lambda)$ and $Q(\lambda)$; then, by finding the zeros of $Q(\lambda)$, obtain all the Bethe roots!

[Baxter 01]

The eigenvalues $\Lambda(\lambda)$ of $t(\lambda)$ are polynomials

$$\Lambda(\lambda) = \sum_{j=0}^{N} T_j \lambda^j \tag{1}$$

and satisfy

$$\Lambda(\lambda) Q(\lambda) = \left(\lambda + \frac{i}{2}\right)^N Q(\lambda - i) + \left(\lambda - \frac{i}{2}\right)^N Q(\lambda + i)$$
 (2)

$$Q(\lambda) = \prod_{m=1}^{M} (\lambda - \lambda_m) = \sum_{j=0}^{M} Q_j \lambda^j, \qquad Q_M = 1$$
(3)

Can solve (2) numerically for both $\Lambda(\lambda)$ and $Q(\lambda)$; then, by finding the zeros of $Q(\lambda)$, obtain all the Bethe roots!

Substitute (I) & (3) into (2); equate coefficients of equal powers of λ ; solve.

The eigenvalues $\Lambda(\lambda)$ of $t(\lambda)$ are polynomials

$$\Lambda(\lambda) = \sum_{j=0}^{N} T_j \lambda^j \tag{1}$$

and satisfy

$$\Lambda(\lambda) Q(\lambda) = \left(\lambda + \frac{i}{2}\right)^N Q(\lambda - i) + \left(\lambda - \frac{i}{2}\right)^N Q(\lambda + i)$$
 (2)

$$Q(\lambda) = \prod_{m=1}^{M} (\lambda - \lambda_m) = \sum_{j=0}^{M} Q_j \lambda^j, \qquad Q_M = 1$$
(3)

Can solve (2) numerically for both $\Lambda(\lambda)$ and $Q(\lambda)$; then, by finding the zeros of $Q(\lambda)$, obtain all the Bethe roots!

[Baxter 01]

Substitute (1) & (3) into (2); equate coefficients of equal powers of λ ; solve.

Up to N=9 on this laptop

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

$$(\mathcal{N}, \mathcal{N}_s, \mathcal{N}_{sp}; \mathcal{N} - \mathcal{N}_s + \mathcal{N}_{sp})$$

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0; 5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

$$(\mathcal{N},\mathcal{N}_s,\mathcal{N}_{sp}\,;\mathcal{N}-\mathcal{N}_s+\mathcal{N}_{sp})$$
 \uparrow
 \uparrow
 \uparrow
 \sharp solutions
$$\# \ \text{singular}$$
 $\{\pm \frac{i}{2}\,,\ldots\}$

$M \over N$	1	2	3	4	5	6	7
2	(1,0,0;1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0;6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0;7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0;8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	(10,0,0; 10)	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	(11,0,0; 11)	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

M N	1	2	3	4	5	6	7
2	(1,0,0;1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0;7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	(10,0,0; 10)	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	(11,0,0; 11)	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

M	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0;7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	(11,0,0; 11)	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

perfect agreement with conjecture!

singular physical

$$\left[-\prod_{k=3}^{M} \left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}} \right) \right]^N = 1$$

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0; 5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	(11,0,0; 11)	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

perfect agreement with conjecture!

singular physical $M = \begin{bmatrix} M & I \\ I & I \end{bmatrix}^N$

$$\left[-\prod_{k=3}^{M} \left(\frac{\lambda_k + \frac{i}{2}}{\lambda_k - \frac{i}{2}} \right) \right]^N = 1$$

BE have "too many" solutions. But, after discarding unphysical singular solutions, remain with just right #

Remarks:

- Many unphysical singular solutions are not self-conjugate
 - do not obey string hypothesis

Remarks:

Many unphysical singular solutions are not self-conjugate
 do not obey string hypothesis
 N=8, M=4

number		Bethe roots $\{\lambda_k\}$	
1	± 0.5250121022236669	$\pm\ 0.1294729463749287$	
2	0.5570702385744416	0.1470126111961413	$-0.3520414248852914 \pm 0.5005581696433306I$
3*	$\pm~0.5I$	$-0.2930497652740115 \pm 0.5002695484553508I$	
4*	$\pm~0.5I$	0.09053461122303935	0.4866819617430914
5*	$\pm~0.5I$	-0.04929340793103601 + 1.631134975618312I	-0.2430919428911911-0.06188079036780695I
6*	$\pm~0.5I$	0.6439488581706157 - 0.1197616885579488I	0.05986712277687283 + 1.57171694471433I
7*	$\pm~0.5I$	0.04929340793103601 + 1.631134975618312I	0.2430919428911911 - 0.06188079036780695I
8**	$\pm~0.5I$	$\pm\ 0.5638252623934961$	
9	0.2205600072920844	-0.6691229228815117	$0.2242814577947136 \pm 1.002247276506607I$
10*	$\pm~0.5I$	0.1695810016454493	-0.522716443014433
11*	$\pm~0.5I$	-0.05986712277687283 + 1.57171694471433I	-0.6439488581706157-0.1197616885579488I
12*	$\pm~0.5I$	1.653144833689466I	-0.050307293346599I
13*	$\pm~0.5 \mathrm{I}$	0.522716443014433	-0.1695810016454493
14*	$\pm~0.5I$	0.050307293346599I	-1.653144833689466I
15*	$\pm~0.5I$	-0.4866819617430914	-0.09053461122303935
16*	$\pm~0.5I$	0.04929340793103601 - 1.631134975618312I	0.2430919428911911 + 0.06188079036780695I
17*	$\pm~0.5\mathrm{I}$	$0.2930497652740115 \pm 0.5002695484553508I$	
18**	$\pm~0.5I$	$\pm\ 0.1424690678305666$	
19**	$\pm~0.5I$	$\pm\ 1.556126503577051I$	
20*	$\pm~0.5I$	3.517084291308099I	1.508105736964082I
21	0.2443331937711654	-0.08378710739142802	$-0.08027304318986867 \pm 1.005588273959932I$
22*	$\pm~0.5$ I	0.05986712277687283 - 1.57171694471433I	0.6439488581706157 + 0.1197616885579488I
23	0.1211861779691729	-0.5716111771864383	$0.2252124996086327 \pm 0.5000288621635332I$
24		$\pm 0.4632647275890309 \pm 0.5022938535699026I$	
25	-0.1470126111961413	-0.5570702385744416	$0.3520414248852914 \pm 0.5005581696433306I$
26*	$\pm~0.5I$	$-0.05986712277687283 - 1.57171694471433 \mathrm{I}$	-0.6439488581706157 + 0.1197616885579488I
27	0.08378710739142802	-0.2443331937711654	$0.08027304318986867 \pm 1.005588273959932I$
28*	$\pm~0.5$ I	-0.2430919428911911 + 0.061880790367806951	-0.04929340793103601-1.631134975618312I
29	$\pm 1.025705081230743I$	$\pm \ 0.0413091275245562$	
30*	$\pm~0.5I$	-1.508105736964082I	-3.517084291308099I
31	0.5716111771864383	-0.1211861779691729	$-0.2252124996086327 \pm 0.5000288621635332I$
32	-0.2205600072920844	0.6691229228815117	$-0.2242814577947136 \pm 1.002247276506607I$

Remarks:

Many unphysical singular solutions are not self-conjugate
 do not obey string hypothesis
 N=8, M=4

number		Bethe roots $\{\lambda_k\}$	
1	± 0.5250121022236669	$\pm\ 0.1294729463749287$	
2	0.5570702385744416	0.1470126111961413	$-0.3520414248852914 \pm 0.5005581696433306I$
3*	$\pm~0.5I$	$-0.2930497652740115 \pm 0.5002695484553508I$	
4*	$\pm~0.5I$	0.09053461122303935	0.4866819617430914
5*	$\pm~0.5I$	-0.04929340793103601 + 1.631134975618312I	-0.2430919428911911-0.06188079036780695I
6*	$\pm~0.5I$	0.6439488581706157 - 0.1197616885579488I	0.05986712277687283 + 1.57171694471433I
7*	$\pm~0.5I$	0.04929340793103601 + 1.631134975618312I	0.2430919428911911 - 0.06188079036780695I
8**	$\pm~0.5I$	$\pm\ 0.5638252623934961$	
9	0.2205600072920844	-0.6691229228815117	$0.2242814577947136 \pm 1.002247276506607I$
10*	$\pm~0.5I$	0.1695810016454493	-0.522716443014433
11*	$\pm~0.5I$	-0.05986712277687283 + 1.57171694471433I	-0.6439488581706157-0.1197616885579488I
12*	$\pm~0.5I$	1.653144833689466I	-0.050307293346599I
13*	$\pm~0.5\mathrm{I}$	0.522716443014433	-0.1695810016454493
14*	$\pm~0.5I$	0.050307293346599I	-1.653144833689466I
15*	$\pm~0.5I$	-0.4866819617430914	-0.09053461122303935
16*	$\pm~0.5I$	0.04929340793103601 - 1.631134975618312I	0.2430919428911911 + 0.06188079036780695I
17*	$\pm~0.5I$	$0.2930497652740115 \pm 0.5002695484553508I$	
18**	$\pm~0.5I$	$\pm\ 0.1424690678305666$	
19**	$\pm~0.5I$	$\pm\ 1.556126503577051I$	
20*	$\pm~0.5I$	3.517084291308099I	1.508105736964082I
21	0.2443331937711654	-0.08378710739142802	$-0.08027304318986867 \pm 1.005588273959932I$
22*	$\pm~0.5$ I	0.05986712277687283 - 1.57171694471433I	0.6439488581706157 + 0.1197616885579488I
23	0.1211861779691729	-0.5716111771864383	$0.2252124996086327 \pm 0.5000288621635332I$
24		$\pm 0.4632647275890309 \pm 0.5022938535699026I$	
25	-0.1470126111961413	-0.5570702385744416	$0.3520414248852914 \pm 0.5005581696433306I$
26*	$\pm~0.5I$	$-0.05986712277687283 - 1.57171694471433 \mathrm{I}$	-0.6439488581706157 + 0.1197616885579488I
27	0.08378710739142802	-0.2443331937711654	$0.08027304318986867 \pm 1.005588273959932I$
28*	$\pm~0.5$ I	-0.2430919428911911 + 0.061880790367806951	-0.04929340793103601-1.631134975618312I
29	$\pm 1.025705081230743I$	$\pm \ 0.0413091275245562$	
30*	$\pm~0.5I$	-1.508105736964082I	-3.517084291308099I
31	0.5716111771864383	-0.1211861779691729	$-0.2252124996086327 \pm 0.5000288621635332I$
32	-0.2205600072920844	0.6691229228815117	$-0.2242814577947136 \pm 1.002247276506607I$

• For odd N, most singular solutions are unphysical

• For odd N, most singular solutions are unphysical

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9 10 11	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	$(122,\ 84,\ 4;\ 42)$		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

• For odd N, most singular solutions are unphysical

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	$(2,0,0;\ 2)$						
4	(3,0,0; 3)	(2, 1, 1; 2)					
$\lfloor 5 \rfloor$	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0; 5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
8	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	$(452, 330, \underline{10}; 132)$	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

noted earlier: $\pm i/2$ is unphysical for ALL odd N

• For odd N, most singular solutions are unphysical

$M \over N$	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0; 5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	$(83, 9, \overline{1}; 75)$	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	$(452, 330, \underline{10}; 132)$	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

noted earlier: $\pm i/2$ is unphysical for ALL odd N

Exception N=9, M=3: there are 2 singular physical solutions

For odd N, most singular solutions are unphysical

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9,1,1;9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20,1,1;20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	$(54,\ 1,\ 1;\ 54)$	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

noted earlier: $\pm i/2$ is unphysical for ALL odd N

Exception N=9, M=3: there are 2 singular physical solutions

periodic: N = 9+6n, n=0,1,2,...

Expect other exceptions for higher M

• Few of the singular solutions are physical $N_s \gg N_{sp}$

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0;7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	$(452,\ 330,\ 10;\ 132)$	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

• Few of the singular solutions are physical

$$\mathcal{N}_s \gg \mathcal{N}_{sp}$$

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

For M ~ N/2, # unphysical singular ≥ # highest-weight states

$$\mathcal{N}_s - \mathcal{N}_{sp} \gtrsim {N \choose M} - {N \choose M-1}$$

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0;7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	(10,0,0; 10)	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	(11,0,0; 11)	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

• Few of the singular solutions are physical

$$\mathcal{N}_s\gg\mathcal{N}_{sp}$$

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	$(11,0,0;\ 11)$	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

For M ~ N/2, # unphysical singular ≥ # highest-weight states

$$\mathcal{N}_s - \mathcal{N}_{sp} \gtrsim \binom{N}{M} - \binom{N}{M-1}$$

M	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0;7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	(10,0,0; 10)	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	(11,0,0; 11)	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

Suggests that
$$\mathcal{N} \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$$
 is wrong also for $\mathbb{N} \to \infty$

But there are "proofs" of
$$\mathcal{N} \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$$
 for $\mathbb{N} \to \infty$

[Bethe 31, Kirillov 85, Faddeev 96]

But there are "proofs" of
$$\mathcal{N} \stackrel{?}{=} \binom{N}{M} - \binom{N}{M-1}$$
 for $\mathbb{N} \to \infty$

[Bethe 31, Kirillov 85, Faddeev 96]

Suggests that these proofs are not quite right

Remarkable new conjectures

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8 9	(7,0,0;7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	(10,0,0; 10)	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12 13	(11,0,0; 11)	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Example: N and $M \ge 4$ both even

$$\mathcal{N}(N,M) = \binom{N-1}{M} - \binom{\frac{N-2}{2}}{\frac{M-2}{2}}$$

$$\mathcal{N}_s(N,M) = \binom{N-1}{M} - \binom{N}{M} + \binom{N}{M-1}$$

$$\mathcal{N}_{sp}(N,M) = \binom{\frac{N-2}{2}}{\frac{M-2}{2}}$$

Remarkable new conjectures

M	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0;7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	(10,0,0; 10)	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	(11,0,0; 11)	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

Example: N and M \geq 4 both even

$$\mathcal{N}(N,M) = \binom{N-1}{M} - \binom{\frac{N-2}{2}}{\frac{M-2}{2}}$$

$$\mathcal{N}_s(N,M) = \binom{N-1}{M} - \binom{N}{M} + \binom{N}{M-1}$$

$$\mathcal{N}_{sp}(N,M) = \binom{\frac{N-2}{2}}{\frac{M-2}{2}}$$

Similar expressions for certain other values of N and M

M N	1	2	3	4	5	6	7
2	(1,0,0; 1)						
3	(2,0,0; 2)						
4	(3,0,0; 3)	(2, 1, 1; 2)					
5	(4,0,0; 4)	(6, 1, 0; 5)					
6	(5,0,0;5)	(9, 1, 1; 9)	(9, 5, 1; 5)				
7	(6,0,0; 6)	(15, 1, 0; 14)	(20, 6, 0; 14)				
8	(7,0,0; 7)	(20, 1, 1; 20)	(34, 7, 1; 28)	(32, 21, 3; 14)			
9	(8,0,0; 8)	(28, 1, 0; 27)	(54, 8, 2; 48)	(69, 27, 0; 42)			
10	(9,0,0; 9)	(35, 1, 1; 35)	(83, 9, 1; 75)	(122, 36, 4; 90)	(122, 84, 4; 42)		
11	$(10,0,0;\ 10)$	(45, 1, 0; 44)	(120, 10, 0; 110)	(209, 44, 0; 165)	(252, 120, 0; 132)		
12	(11,0,0; 11)	(54, 1, 1; 54)	(163, 10, 1; 154)	(325, 55, 5; 275)	(456, 163, 4; 297)	(452, 330, 10; 132)	
13	(12, 0, 0; 12)	(66, 1, 0; 65)	(220, 12, 0; 208)	(494, 65, 0; 429)	(792, 220, 0; 572)	(919, 490, 0, 429)	
14	(13, 0, 0; 13)	(77, 1, 1; 77)	(285, 13, 1; 273)	(709, 78, 6; 637)	(1281, 286, 6; 1001)	(1701, 715, 15; 1001)	(1701, 1287, 15; 429)

Example: N and $M \ge 4$ both even

$$\mathcal{N}(N,M) = \binom{N-1}{M} - \binom{\frac{N-2}{2}}{\frac{M-2}{2}}$$

$$\mathcal{N}_s(N,M) = \binom{N-1}{M} - \binom{N}{M} + \binom{N}{M-1}$$

$$\mathcal{N}_{sp}(N,M) = \binom{\frac{N-2}{2}}{\frac{M-2}{2}}$$

Similar expressions for certain other values of N and M

Based on relation to "rigged configurations"

[Kirillov & Reshetikhin 86]

Integrable spin s > 1/2

BE
$$(\lambda_k + is)^N \prod_{\substack{j \neq k \ j=1}}^M (\lambda_k - \lambda_j - i) = (\lambda_k - is)^N \prod_{\substack{j \neq k \ j=1}}^M (\lambda_k - \lambda_j + i),$$

Integrable spin s > 1/2

BE
$$(\lambda_k + i \mathfrak{S})^N \prod_{\substack{j \neq k \\ j = 1}}^M (\lambda_k - \lambda_j - i) = (\lambda_k - i \mathfrak{S})^N \prod_{\substack{j \neq k \\ j = 1}}^M (\lambda_k - \lambda_j + i) ,$$

$$k = 1, 2, \dots, M , \qquad M = 0, 1, \dots, \mathfrak{S}N$$

$$s = \frac{1}{2}, 1, \frac{3}{2}, \dots$$

 $s = \frac{1}{2}, 1, \frac{3}{2}, \dots$

Integrable spin s > 1/2

BE
$$(\lambda_k + is)^N \prod_{\substack{j \neq k \ j=1}}^M (\lambda_k - \lambda_j - i) = (\lambda_k - is)^N \prod_{\substack{j \neq k \ j=1}}^M (\lambda_k - \lambda_j + i),$$
 $k = 1, 2, \dots, M, \qquad M = 0, 1, \dots, sN$

singular solutions contain exact string

$$is, i(s-1), \ldots, -i(s-1), -is$$

Integrable spin s > 1/2

BE
$$(\lambda_k + is)^N \prod_{\substack{j \neq k \ j=1}}^M (\lambda_k - \lambda_j - i) = (\lambda_k - is)^N \prod_{\substack{j \neq k \ j=1}}^M (\lambda_k - \lambda_j + i),$$
 $k = 1, 2, \dots, M, \qquad M = 0, 1, \dots, sN$ $s = \frac{1}{2}, 1, \frac{3}{2}, \dots$

singular solutions contain exact string

$$is, i(s-1), \ldots, -i(s-1), -is$$

exact (2s+1)-string centered at origin

Integrable spin s > 1/2

BE
$$(\lambda_k + is)^N \prod_{\substack{j \neq k \ j=1}}^M (\lambda_k - \lambda_j - i) = (\lambda_k - is)^N \prod_{\substack{j \neq k \ j=1}}^M (\lambda_k - \lambda_j + i),$$
 $k = 1, 2, \dots, M, \qquad M = 0, 1, \dots, sN$ $s = \frac{1}{2}, 1, \frac{3}{2}, \dots$

singular solutions contain exact string

$$is, i(s-1), \ldots, -i(s-1), -is$$

exact (2s+1)-string centered at origin

Condition to be physical: other roots $\lambda_{2s+2}, \dots, \lambda_{M}$ should obey

$$\left[(-1)^{2s} \prod_{k=2s+2}^{M} \left(\frac{\lambda_k + is}{\lambda_k - is} \right) \right]^N = 1$$

$$s=1: i, -i, 0, 0, \dots$$

$$s=1:$$
 $i,-i,0,0,\dots$ repeated!

$$s=1: i, -i, 0, 0, \dots$$

Condition to be physical: other roots $\lambda_5, \dots, \lambda_M$ should obey

$$\prod_{j=5}^{M} \left(\frac{\lambda_j + 2i}{\lambda_j - 2i} \right) = (-1)^N$$

$$s=1: i, -i, 0, 0, \dots$$

Condition to be physical: other roots $\lambda_5, \dots, \lambda_M$ should obey

$$\prod_{j=5}^{M} \left(\frac{\lambda_j + 2i}{\lambda_j - 2i} \right) = (-1)^N$$

M N	1	2	3	4	5	6	7	8
2	$(1,0,0,0;\ 1)$	(1,0,0,0; 1)						
3	$(2,0,0,0;\ 2)$	$(3,0,0,0;\ 3)$	$(1,1,1,0;\ 1)$					
4	(3,0,0,0; 3)	(6,0,0,0; 6)	(6,1,1,0; 6)	$(4,2,0,1;\ 3)$				
5	(4,0,0,0; 4)	(10,0,0,0; 10)	$(15,1,1,0;\ 15)$	(19,4,0,0; 15)	(14,10,2,0; 6)			
6	(5,0,0,0;5)	(15,0,0,0; 15)	(29,1,1,0; 29)	(43,4,0,1; 40)	$(48,15,3,0;\ 36)$	$(41,28,0,2;\ 15)$		
7	(6,0,0,0; 6)	$(21,0,0,0;\ 21)$	(49,1,1,0; 49)	(90,6,0,0; 84)	$(123,21,3,0;\ 105)$	(141,50,0,0; 91)	(120,90,6,0; 36)	
8	(7,0,0,0;7)	(28,0,0,0; 28)	(76,1,1,0;76)	$(159,6,0,1;\ 154)$	(262,28,4,0; 238)	(351,74,0,3; 280)	(384,161,9,0; 232)	(345,260,0,6; 91)

of strange solutions

$$s=1: i, -i, 0, 0, \dots$$

Condition to be physical: other roots $\lambda_5, \dots, \lambda_M$ should obey

$$\prod_{j=5}^{M} \left(\frac{\lambda_j + 2i}{\lambda_j - 2i} \right) = (-1)^N$$

M N	1	2	3	4	5	6	7	8
2 3 4 5 6 7 8	(1,0,0,0; 1) $(2,0,0,0; 2)$ $(3,0,0,0; 3)$ $(4,0,0,0; 4)$ $(5,0,0,0; 5)$ $(6,0,0,0; 6)$ $(7,0,0,0; 7)$	(1,0,0,0; 1) $(3,0,0,0; 3)$ $(6,0,0,0; 6)$ $(10,0,0,0; 10)$ $(15,0,0,0; 15)$ $(21,0,0,0; 21)$ $(28,0,0,0; 28)$	(1,1,1,0; 1) $(6,1,1,0; 6)$ $(15,1,1,0; 15)$ $(29,1,1,0; 29)$ $(49,1,1,0; 49)$ $(76,1,1,0; 76)$	(4,2,0,1; 3) $(19,4,0,0; 15)$ $(43,4,0,1; 40)$ $(90,6,0,0; 84)$ $(159,6,0,1; 154)$	(14,10,2,0; 6) $(48,15,3,0; 36)$ $(123,21,3,0; 105)$ $(262,28,4,0; 238)$	(41,28,0,2; 15) (141,50,0,0; 91) (351,74,0,3; 280)	(120,90,6,0; 36) (384,161,9,0; 232)	(345,260,0,6; 91)

of strange solutions

maybe accounts for RSOS structure?

[Reshetikhin 1991]

$$\underbrace{\mathbf{s} \otimes \cdots \otimes \mathbf{s}}_{N} = \bigoplus_{S=0}^{sN} n(N, S) \mathbf{S}$$

$$\underbrace{\mathbf{s} \otimes \cdots \otimes \mathbf{s}}_{N} = \bigoplus_{S=0}^{sN} n(N,S) \mathbf{S}$$

$$\underbrace{\mathbf{s} \otimes \cdots \otimes \mathbf{s}}_{N} = \bigoplus_{S=0}^{sN} n(N,S) \mathbf{S}$$

spin of Bethe state with M roots: S = sN - M

$$S = sN - M$$

$$\underbrace{\mathbf{s} \otimes \cdots \otimes \mathbf{s}}_{N} = \bigoplus_{S=0}^{sN} n(N,S) \mathbf{S}$$

spin of Bethe state with M roots: S = sN - M

$$S = sN - M$$

spin-s conjecture:

$$\mathcal{N}(N, M) - \mathcal{N}_s(N, M) + \mathcal{N}_{sp}(N, M) + \mathcal{N}_{strange}(N, M) = n(N, sN - M)$$

$$\underbrace{\mathbf{s} \otimes \cdots \otimes \mathbf{s}}_{N} = \bigoplus_{S=0}^{sN} n(N,S) \mathbf{S}$$

spin of Bethe state with M roots: S = sN - M

$$S = sN - M$$

spin-s conjecture:

$$\mathcal{N}(N, M) - \mathcal{N}_s(N, M) + \mathcal{N}_{sp}(N, M) + \mathcal{N}_{strange}(N, M) = n(N, sN - M)$$

BE have "too many" solutions. After discarding unphysical singular solutions, there may not remain enough solutions with pairwise distinct roots to account for all states.

$$\underbrace{\mathbf{s} \otimes \cdots \otimes \mathbf{s}}_{N} = \bigoplus_{S=0}^{sN} n(N,S) \mathbf{S}$$

spin of Bethe state with M roots: S = sN - M

$$S = sN - M$$

spin-s conjecture:

$$\mathcal{N}(N, M) - \mathcal{N}_s(N, M) + \mathcal{N}_{sp}(N, M) + \mathcal{N}_{strange}(N, M) = n(N, sN - M)$$

BE have "too many" solutions. After discarding unphysical singular solutions, there may not remain enough solutions with pairwise distinct roots to account for all states.

s=1:

M N	1	2	3	4	5	6	7	8
2	(1,0,0,0; 1)	$(1,0,0,0;\ 1)$						
3	(2,0,0,0; 2)	(3,0,0,0; 3)	$(1,1,1,0;\ 1)$					
4	(3,0,0,0; 3)	(6,0,0,0;6)	(6,1,1,0; 6)	(4,2,0,1; 3)				
5	(4,0,0,0; 4)	(10,0,0,0; 10)	$(15,1,1,0;\ 15)$	(19,4,0,0; 15)	(14,10,2,0; 6)			
6	(5,0,0,0;5)	(15,0,0,0; 15)	(29,1,1,0; 29)	(43,4,0,1; 40)	$(48,15,3,0;\ 36)$	$(41,28,0,2;\ 15)$		
7	(6,0,0,0; 6)	(21,0,0,0; 21)	(49,1,1,0; 49)	(90,6,0,0; 84)	$(123,21,3,0;\ 105)$	(141,50,0,0; 91)	(120,90,6,0; 36)	
8	(7,0,0,0;7)	(28,0,0,0; 28)	(76,1,1,0; 76)	(159,6,0,1; 154)	(262,28,4,0; 238)	$(351,74,0,3;\ 280)$	(384,161,9,0; 232)	(345,260,0,6; 91)

$$(\mathcal{N}, \mathcal{N}_s, \mathcal{N}_{sp}, \mathcal{N}_{\text{strange}}; \mathcal{N} - \mathcal{N}_s + \mathcal{N}_{sp} + \mathcal{N}_{\text{strange}})$$

$$\underbrace{\mathbf{s} \otimes \cdots \otimes \mathbf{s}}_{N} = \bigoplus_{S=0}^{sN} n(N,S) \mathbf{S}$$

spin of Bethe state with M roots: S = sN - M

$$S = sN - M$$

spin-s conjecture:

$$\mathcal{N}(N, M) - \mathcal{N}_s(N, M) + \mathcal{N}_{sp}(N, M) + \mathcal{N}_{strange}(N, M) = n(N, sN - M)$$

BE have "too many" solutions. After discarding unphysical singular solutions, there may not remain enough solutions with pairwise distinct roots to account for all states.

S=1:

M N	1	2	3	4	5	6	7	8
2	(1,0,0,0; 1)	(1,0,0,0; 1)						
3	(2,0,0,0; 2)	(3,0,0,0;3)	(1,1,1,0; 1)					
4	(3,0,0,0; 3)	(6,0,0,0;6)	(6,1,1,0;6)	(4,2,0,1;3)				
5	(4,0,0,0;4)	(10,0,0,0; 10)	(15,1,1,0; 15)	(19,4,0,0; 15)	(14,10,2,0; 6)			
6	(5,0,0,0;5)	(15,0,0,0; 15)	(29,1,1,0; 29)	(43,4,0,1; 40)	$(48,15,3,0;\ 36)$	(41,28,0,2; 15)		
7	(6,0,0,0; 6)	(21,0,0,0; 21)	(49,1,1,0; 49)	(90,6,0,0; 84)	$(123,21,3,0;\ 105)$	(141,50,0,0; 91)	(120,90,6,0; 36)	
8	(7,0,0,0;7)	$(28,0,0,0;\ 28)$	(76,1,1,0;76)	$(159,6,0,1;\ 154)$	(262,28,4,0; 238)	(351,74,0,3; 280)	(384,161,9,0; 232)	(345,260,0,6; 91)

$$(\mathcal{N}, \mathcal{N}_s, \mathcal{N}_{sp}, \mathcal{N}_{\text{strange}}; \mathcal{N} - \mathcal{N}_s + \mathcal{N}_{sp} + \mathcal{N}_{\text{strange}})$$

perfect agreement with conjecture!

s=3/2:

• agreement with conjecture up to N=7

s=3/2:

• agreement with conjecture up to N=7

• (non-singular) strange solutions:

N	M	$\lambda_1,\ldots,\lambda_M$	
3	2	0,0	

s=3/2:

• agreement with conjecture up to N=7

• (non-singular) strange solutions:

N	M	$\mid \lambda_1, \ldots, \lambda_M \mid$
3	2	0,0
6	2	1.5,1.5
6	2	-1.5, -1.5

BE generally have "too many" solutions with distinct roots.

• BE generally have "too many" solutions with distinct roots.

But, after discarding unphysical singular solutions: for s=1/2, remain with just right #

BE generally have "too many" solutions with distinct roots.

But, after discarding unphysical singular solutions:

for s=1/2, remain with just right #

for s>1/2, do not always remain with enough such solutions,

in which case need repeated roots

BE generally have "too many" solutions with distinct roots.

But, after discarding unphysical singular solutions:

for s=1/2, remain with just right #

for s>1/2, do not always remain with enough such solutions, in which case need repeated roots

Simple characterization of physical singular solutions:

$$\left[(-1)^{2s} \prod_{k=2s+2}^{M} \left(\frac{\lambda_k + is}{\lambda_k - is} \right) \right]^N = 1$$

BE generally have "too many" solutions with distinct roots.

But, after discarding unphysical singular solutions:

for s=1/2, remain with just right #

for s>1/2, do not always remain with enough such solutions, in which case need repeated roots

Simple characterization of physical singular solutions:

$$\left[(-1)^{2s} \prod_{k=2s+2}^{M} \left(\frac{\lambda_k + is}{\lambda_k - is} \right) \right]^N = 1$$

 Homotopy continuation is a useful tool for checking completeness of polynomial Bethe ansatz equations

Questions

- How to reconcile singular solutions with string hypothesis?
- Effect of strange solutions (s>1/2)?
- Characterization of strange singular solutions (s>1)?

Questions

- How to reconcile singular solutions with string hypothesis?
- Effect of strange solutions (s>1/2)?
- Characterization of strange singular solutions (s>1)?

Thank you!