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Two-way nature of this conjecture:

1. For every highest-weight eigenstate of t(λ), there 
exists a solution of BE with pairwise distinct roots

2. For every solution of BE with pairwise distinct roots (that, if 
singular, is also physical), there is a highest-weight eigenstate of t(λ) 

Previous studies have focused only on 1.

To check conjecture, 
must find ALL solutions of BE with pairwise distinct roots.

 For N>5, brute force is not an option...
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number Bethe roots {λk}
1 ± 0.5250121022236669 ± 0.1294729463749287
2 0.5570702385744416 0.1470126111961413 -0.3520414248852914 ± 0.5005581696433306I
3* ± 0.5I -0.2930497652740115 ± 0.5002695484553508I
4* ± 0.5I 0.09053461122303935 0.4866819617430914
5* ± 0.5I -0.04929340793103601+1.631134975618312I -0.2430919428911911-0.06188079036780695I
6* ± 0.5I 0.6439488581706157-0.1197616885579488I 0.05986712277687283+1.57171694471433I
7* ± 0.5I 0.04929340793103601+1.631134975618312I 0.2430919428911911-0.06188079036780695I
8** ± 0.5I ± 0.5638252623934961
9 0.2205600072920844 -0.6691229228815117 0.2242814577947136 ± 1.002247276506607I

10* ± 0.5I 0.1695810016454493 -0.522716443014433
11* ± 0.5I -0.05986712277687283+1.57171694471433I -0.6439488581706157-0.1197616885579488I
12* ± 0.5I 1.653144833689466I -0.050307293346599I
13* ± 0.5I 0.522716443014433 -0.1695810016454493
14* ± 0.5I 0.050307293346599I -1.653144833689466I
15* ± 0.5I -0.4866819617430914 -0.09053461122303935
16* ± 0.5I 0.04929340793103601-1.631134975618312I 0.2430919428911911+0.06188079036780695I
17* ± 0.5I 0.2930497652740115 ± 0.5002695484553508I
18** ± 0.5I ± 0.1424690678305666
19** ± 0.5I ± 1.556126503577051I
20* ± 0.5I 3.517084291308099I 1.508105736964082I
21 0.2443331937711654 -0.08378710739142802 -0.08027304318986867 ± 1.005588273959932I
22* ± 0.5I 0.05986712277687283-1.57171694471433I 0.6439488581706157+0.1197616885579488I
23 0.1211861779691729 -0.5716111771864383 0.2252124996086327 ± 0.5000288621635332I
24 ± 0.4632647275890309 ± 0.5022938535699026I
25 -0.1470126111961413 -0.5570702385744416 0.3520414248852914 ± 0.5005581696433306I
26* ± 0.5I -0.05986712277687283-1.57171694471433I -0.6439488581706157+0.1197616885579488I
27 0.08378710739142802 -0.2443331937711654 0.08027304318986867 ± 1.005588273959932I
28* ± 0.5I -0.2430919428911911+0.06188079036780695I -0.04929340793103601-1.631134975618312I
29 ± 1.025705081230743I ± 0.0413091275245562
30* ± 0.5I -1.508105736964082I -3.517084291308099I
31 0.5716111771864383 -0.1211861779691729 -0.2252124996086327 ± 0.5000288621635332I
32 -0.2205600072920844 0.6691229228815117 -0.2242814577947136 ± 1.002247276506607I

Table 1: Solutions with distinct roots of the Bethe equations for N = 8,M = 4. Singular solutions
that are unphysical are labeled by ∗, and singular solutions that are physical are labeled by ∗∗.

Furthermore, it can be shown that the eigenvalues of the transfer matrix, which we denote
here by T (λ), are polynomials in λ of degree N ,

T (λ) =
N
∑

j=0

Tjλ
j , (4.2)

where the coefficients Tj are independent of λ. Moreover, the transfer matrix eigenvalues
satisfy the celebrated T-Q equation [5, 6, 7, 8]

T (λ)Q(λ) =

(

λ+
i

2

)N

Q(λ− i) +

(

λ−
i

2

)N

Q(λ+ i) , (4.3)

where Q(λ) is a polynomial in λ of degree M , whose zeros are the sought-after solutions of
the Bethe equations (1.3)

Q(λ) =
M∏

m=1

(λ− λm) =
M∑

j=0

Qjλ
j , QM = 1 , (4.4)

where the coefficients Qj are independent of λ. Indeed, dividing both sides of (4.3) by Q(λ),
it appears that the RHS has poles at the zeros of Q(λ), in contradiction with the fact the
LHS is a polynomial in λ and must therefore be regular. The only way out of this paradox
is for the poles to cancel, the condition for which is precisely the Bethe equations (1.3).

Interestingly, it is possible to solve the T-Q equation (4.3) numerically for both T (λ)
and Q(λ); and then, by finding the zeros of Q(λ), determine all the solutions of the Bethe

9

N=8, M=4:

* singular unphysical

** singular physical
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Furthermore, it can be shown that the eigenvalues of the transfer matrix, which we denote
here by T (λ), are polynomials in λ of degree N ,

T (λ) =
N
∑

j=0

Tjλ
j , (4.2)

where the coefficients Tj are independent of λ. Moreover, the transfer matrix eigenvalues
satisfy the celebrated T-Q equation [5, 6, 7, 8]

T (λ)Q(λ) =

(

λ+
i

2

)N

Q(λ− i) +

(

λ−
i

2

)N

Q(λ+ i) , (4.3)

where Q(λ) is a polynomial in λ of degree M , whose zeros are the sought-after solutions of
the Bethe equations (1.3)

Q(λ) =
M∏

m=1

(λ− λm) =
M∑

j=0

Qjλ
j , QM = 1 , (4.4)

where the coefficients Qj are independent of λ. Indeed, dividing both sides of (4.3) by Q(λ),
it appears that the RHS has poles at the zeros of Q(λ), in contradiction with the fact the
LHS is a polynomial in λ and must therefore be regular. The only way out of this paradox
is for the poles to cancel, the condition for which is precisely the Bethe equations (1.3).

Interestingly, it is possible to solve the T-Q equation (4.3) numerically for both T (λ)
and Q(λ); and then, by finding the zeros of Q(λ), determine all the solutions of the Bethe
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Results

where N is the number of solutions with pairwise distinct roots of the Bethe equations; N
s

is the number of singular solutions; and N
sp

is the number of singular solutions that are
physical. (See Section 2 for further details.) These quantities can easily be read o↵ from
Table 1 and the supplemental tables [64] as follows: N is the number of solutions listed in a
given table; N

s

is the number of those solutions labeled with either a single ⇤ or double ⇤⇤
star; and N

sp

is the number of those solutions labeled with a double star.

N
M

1 2 3 4 5 6 7

2 (1,0,0; 1)

3 (2,0,0; 2)

4 (3,0,0; 3) (2, 1, 1; 2)

5 (4,0,0; 4) (6, 1, 0; 5)

6 (5,0,0; 5) (9, 1, 1; 9) (9, 5, 1; 5)

7 (6,0,0; 6) (15, 1, 0; 14) (20, 6, 0; 14)

8 (7,0,0; 7) (20, 1, 1; 20) (34, 7, 1; 28) (32, 21, 3; 14)

9 (8,0,0; 8) (28, 1, 0; 27) (54, 8, 2; 48) (69, 27, 0; 42)

10 (9,0,0; 9) (35, 1, 1; 35) (83, 9, 1; 75) (122, 36, 4; 90) (122, 84, 4; 42)

11 (10,0,0; 10) (45, 1, 0; 44) (120, 10, 0; 110) (209, 44, 0; 165) (252, 120, 0; 132)

12 (11,0,0; 11) (54, 1, 1; 54) (163, 10, 1; 154) (325, 55, 5; 275) (456, 163, 4; 297) (452, 330, 10; 132)

13 (12, 0, 0; 12) (66, 1, 0; 65) (220, 12, 0; 208) (494, 65, 0; 429) (792, 220, 0; 572) (919, 490, 0, 429)

14 (13, 0, 0; 13) (77, 1, 1; 77) (285, 13, 1; 273) (709, 78, 6; 637) (1281, 286, 6; 1001) (1701, 715, 15; 1001) (1701, 1287, 15; 429)

Table 2: The values (N ,N
s

,N
sp

;N � N
s

+ N
sp

) for given values of N and M , where N is the
number of solutions with pairwise distinct roots of the Bethe equations; N

s

is the number of singular
solutions; and N

sp

is the number of singular solutions that are physical.

Remarkably, the quantities N � N
s

+ N
sp

in all the entries of Table 2 coincide with�
N

M

�
�

�
N

M�1

�
, in perfect agreement with the conjecture (2.12). Although this conjecture

was motivated from consideration of a physical model (1.1), it can be viewed solely as a
statement about the solutions of the polynomial equations (1.3) and (2.11), which begs for
a proof.

It is easy to see that the number of solutions for M = 1 is N � 1,

N (N, 1) = N � 1 . (5.1)

Moreover, for M = 2, we observe

N (N, 2) =
1

2

�
N2 + 3N + 1 + (�1)N

�
. (5.2)

It would be interesting to formulate conjectures (not to mention proofs) for N (N,M) for
M � 3.

Several remarks about the singular solutions are in order:

(i) Inspection of Table 1 and the supplemental tables [64] shows that many (but not
all) of the unphysical singular solutions (i.e., those solutions labeled by a single star
⇤) are not self-conjugate. This does not violate any theorems, since only solutions
corresponding to eigenstates of the Hamiltonian are required to be invariant under
complex conjugation [69]. Such solutions definitely do not obey the string hypothesis,
since string configurations are (by definition) self-conjugate.

(ii) For odd values of N , it appears from Table 2 that most singular solutions are un-
physical; i.e., N

sp

(N,M) = 0 for most values of M if N is odd. An exception is the
case N = 9,M = 3, for which N

sp

(9, 3) = 2; and this repeats with a periodicity of 6:
N

sp

(15, 3) = 2, etc. We expect that similar exceptions occur for higher values of M .

11
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in all the entries of Table 2 coincide with�
N

M
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M�1

�
, in perfect agreement with the conjecture (2.12). Although this conjecture

was motivated from consideration of a physical model (1.1), it can be viewed solely as a
statement about the solutions of the polynomial equations (1.3) and (2.11), which begs for
a proof.

It is easy to see that the number of solutions for M = 1 is N � 1,

N (N, 1) = N � 1 . (5.1)

Moreover, for M = 2, we observe

N (N, 2) =
1

2
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N2 + 3N + 1 + (�1)N
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. (5.2)

It would be interesting to formulate conjectures (not to mention proofs) for N (N,M) for
M � 3.

Several remarks about the singular solutions are in order:

(i) Inspection of Table 1 and the supplemental tables [64] shows that many (but not
all) of the unphysical singular solutions (i.e., those solutions labeled by a single star
⇤) are not self-conjugate. This does not violate any theorems, since only solutions
corresponding to eigenstates of the Hamiltonian are required to be invariant under
complex conjugation [69]. Such solutions definitely do not obey the string hypothesis,
since string configurations are (by definition) self-conjugate.

(ii) For odd values of N , it appears from Table 2 that most singular solutions are un-
physical; i.e., N

sp

(N,M) = 0 for most values of M if N is odd. An exception is the
case N = 9,M = 3, for which N
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(9, 3) = 2; and this repeats with a periodicity of 6:
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(15, 3) = 2, etc. We expect that similar exceptions occur for higher values of M .
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where N is the number of solutions with pairwise distinct roots of the Bethe equations; N
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is the number of singular solutions; and N
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is the number of singular solutions that are
physical. (See Section 2 for further details.) These quantities can easily be read o↵ from
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, in perfect agreement with the conjecture (2.12). Although this conjecture

was motivated from consideration of a physical model (1.1), it can be viewed solely as a
statement about the solutions of the polynomial equations (1.3) and (2.11), which begs for
a proof.

It is easy to see that the number of solutions for M = 1 is N � 1,

N (N, 1) = N � 1 . (5.1)

Moreover, for M = 2, we observe

N (N, 2) =
1

2
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N2 + 3N + 1 + (�1)N
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. (5.2)

It would be interesting to formulate conjectures (not to mention proofs) for N (N,M) for
M � 3.

Several remarks about the singular solutions are in order:

(i) Inspection of Table 1 and the supplemental tables [64] shows that many (but not
all) of the unphysical singular solutions (i.e., those solutions labeled by a single star
⇤) are not self-conjugate. This does not violate any theorems, since only solutions
corresponding to eigenstates of the Hamiltonian are required to be invariant under
complex conjugation [69]. Such solutions definitely do not obey the string hypothesis,
since string configurations are (by definition) self-conjugate.

(ii) For odd values of N , it appears from Table 2 that most singular solutions are un-
physical; i.e., N

sp

(N,M) = 0 for most values of M if N is odd. An exception is the
case N = 9,M = 3, for which N

sp

(9, 3) = 2; and this repeats with a periodicity of 6:
N
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(15, 3) = 2, etc. We expect that similar exceptions occur for higher values of M .
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N (N, 2) =
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It would be interesting to formulate conjectures (not to mention proofs) for N (N,M) for
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Several remarks about the singular solutions are in order:

(i) Inspection of Table 1 and the supplemental tables [64] shows that many (but not
all) of the unphysical singular solutions (i.e., those solutions labeled by a single star
⇤) are not self-conjugate. This does not violate any theorems, since only solutions
corresponding to eigenstates of the Hamiltonian are required to be invariant under
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since string configurations are (by definition) self-conjugate.
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case N = 9,M = 3, for which N

sp

(9, 3) = 2; and this repeats with a periodicity of 6:
N

sp

(15, 3) = 2, etc. We expect that similar exceptions occur for higher values of M .

11

(N ,Ns ,Nsp ;N �Ns +Nsp)

# solutions

# singular

# singular physical
"
�

MY

k=3

 
�k + i

2

�k � i
2

!#N
= 1

{± i

2
, . . .}

✓
N

M

◆
�
✓

N

M � 1

◆=

perfect agreement
with conjecture!

| {z }

BE have “too many” solutions. But, after discarding unphysical 
singular solutions, remain with just right #



Remarks:
• Many unphysical singular solutions are not self-conjugate

∴ do not obey string hypothesis



Remarks:
• Many unphysical singular solutions are not self-conjugate

number Bethe roots {λk}
1 ± 0.5250121022236669 ± 0.1294729463749287
2 0.5570702385744416 0.1470126111961413 -0.3520414248852914 ± 0.5005581696433306I
3* ± 0.5I -0.2930497652740115 ± 0.5002695484553508I
4* ± 0.5I 0.09053461122303935 0.4866819617430914
5* ± 0.5I -0.04929340793103601+1.631134975618312I -0.2430919428911911-0.06188079036780695I
6* ± 0.5I 0.6439488581706157-0.1197616885579488I 0.05986712277687283+1.57171694471433I
7* ± 0.5I 0.04929340793103601+1.631134975618312I 0.2430919428911911-0.06188079036780695I
8** ± 0.5I ± 0.5638252623934961
9 0.2205600072920844 -0.6691229228815117 0.2242814577947136 ± 1.002247276506607I

10* ± 0.5I 0.1695810016454493 -0.522716443014433
11* ± 0.5I -0.05986712277687283+1.57171694471433I -0.6439488581706157-0.1197616885579488I
12* ± 0.5I 1.653144833689466I -0.050307293346599I
13* ± 0.5I 0.522716443014433 -0.1695810016454493
14* ± 0.5I 0.050307293346599I -1.653144833689466I
15* ± 0.5I -0.4866819617430914 -0.09053461122303935
16* ± 0.5I 0.04929340793103601-1.631134975618312I 0.2430919428911911+0.06188079036780695I
17* ± 0.5I 0.2930497652740115 ± 0.5002695484553508I
18** ± 0.5I ± 0.1424690678305666
19** ± 0.5I ± 1.556126503577051I
20* ± 0.5I 3.517084291308099I 1.508105736964082I
21 0.2443331937711654 -0.08378710739142802 -0.08027304318986867 ± 1.005588273959932I
22* ± 0.5I 0.05986712277687283-1.57171694471433I 0.6439488581706157+0.1197616885579488I
23 0.1211861779691729 -0.5716111771864383 0.2252124996086327 ± 0.5000288621635332I
24 ± 0.4632647275890309 ± 0.5022938535699026I
25 -0.1470126111961413 -0.5570702385744416 0.3520414248852914 ± 0.5005581696433306I
26* ± 0.5I -0.05986712277687283-1.57171694471433I -0.6439488581706157+0.1197616885579488I
27 0.08378710739142802 -0.2443331937711654 0.08027304318986867 ± 1.005588273959932I
28* ± 0.5I -0.2430919428911911+0.06188079036780695I -0.04929340793103601-1.631134975618312I
29 ± 1.025705081230743I ± 0.0413091275245562
30* ± 0.5I -1.508105736964082I -3.517084291308099I
31 0.5716111771864383 -0.1211861779691729 -0.2252124996086327 ± 0.5000288621635332I
32 -0.2205600072920844 0.6691229228815117 -0.2242814577947136 ± 1.002247276506607I

Table 1: Solutions with distinct roots of the Bethe equations for N = 8,M = 4. Singular solutions
that are unphysical are labeled by ∗, and singular solutions that are physical are labeled by ∗∗.

Furthermore, it can be shown that the eigenvalues of the transfer matrix, which we denote
here by T (λ), are polynomials in λ of degree N ,

T (λ) =
N
∑

j=0

Tjλ
j , (4.2)

where the coefficients Tj are independent of λ. Moreover, the transfer matrix eigenvalues
satisfy the celebrated T-Q equation [5, 6, 7, 8]

T (λ)Q(λ) =

(

λ+
i

2

)N

Q(λ− i) +

(

λ−
i

2

)N

Q(λ+ i) , (4.3)

where Q(λ) is a polynomial in λ of degree M , whose zeros are the sought-after solutions of
the Bethe equations (1.3)

Q(λ) =
M∏

m=1

(λ− λm) =
M∑

j=0

Qjλ
j , QM = 1 , (4.4)

where the coefficients Qj are independent of λ. Indeed, dividing both sides of (4.3) by Q(λ),
it appears that the RHS has poles at the zeros of Q(λ), in contradiction with the fact the
LHS is a polynomial in λ and must therefore be regular. The only way out of this paradox
is for the poles to cancel, the condition for which is precisely the Bethe equations (1.3).

Interestingly, it is possible to solve the T-Q equation (4.3) numerically for both T (λ)
and Q(λ); and then, by finding the zeros of Q(λ), determine all the solutions of the Bethe
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• Many unphysical singular solutions are not self-conjugate

number Bethe roots {λk}
1 ± 0.5250121022236669 ± 0.1294729463749287
2 0.5570702385744416 0.1470126111961413 -0.3520414248852914 ± 0.5005581696433306I
3* ± 0.5I -0.2930497652740115 ± 0.5002695484553508I
4* ± 0.5I 0.09053461122303935 0.4866819617430914
5* ± 0.5I -0.04929340793103601+1.631134975618312I -0.2430919428911911-0.06188079036780695I
6* ± 0.5I 0.6439488581706157-0.1197616885579488I 0.05986712277687283+1.57171694471433I
7* ± 0.5I 0.04929340793103601+1.631134975618312I 0.2430919428911911-0.06188079036780695I
8** ± 0.5I ± 0.5638252623934961
9 0.2205600072920844 -0.6691229228815117 0.2242814577947136 ± 1.002247276506607I

10* ± 0.5I 0.1695810016454493 -0.522716443014433
11* ± 0.5I -0.05986712277687283+1.57171694471433I -0.6439488581706157-0.1197616885579488I
12* ± 0.5I 1.653144833689466I -0.050307293346599I
13* ± 0.5I 0.522716443014433 -0.1695810016454493
14* ± 0.5I 0.050307293346599I -1.653144833689466I
15* ± 0.5I -0.4866819617430914 -0.09053461122303935
16* ± 0.5I 0.04929340793103601-1.631134975618312I 0.2430919428911911+0.06188079036780695I
17* ± 0.5I 0.2930497652740115 ± 0.5002695484553508I
18** ± 0.5I ± 0.1424690678305666
19** ± 0.5I ± 1.556126503577051I
20* ± 0.5I 3.517084291308099I 1.508105736964082I
21 0.2443331937711654 -0.08378710739142802 -0.08027304318986867 ± 1.005588273959932I
22* ± 0.5I 0.05986712277687283-1.57171694471433I 0.6439488581706157+0.1197616885579488I
23 0.1211861779691729 -0.5716111771864383 0.2252124996086327 ± 0.5000288621635332I
24 ± 0.4632647275890309 ± 0.5022938535699026I
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Table 1: Solutions with distinct roots of the Bethe equations for N = 8,M = 4. Singular solutions
that are unphysical are labeled by ∗, and singular solutions that are physical are labeled by ∗∗.

Furthermore, it can be shown that the eigenvalues of the transfer matrix, which we denote
here by T (λ), are polynomials in λ of degree N ,

T (λ) =
N
∑

j=0

Tjλ
j , (4.2)

where the coefficients Tj are independent of λ. Moreover, the transfer matrix eigenvalues
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(
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where Q(λ) is a polynomial in λ of degree M , whose zeros are the sought-after solutions of
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Q(λ) =
M∏

m=1

(λ− λm) =
M∑
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Qjλ
j , QM = 1 , (4.4)

where the coefficients Qj are independent of λ. Indeed, dividing both sides of (4.3) by Q(λ),
it appears that the RHS has poles at the zeros of Q(λ), in contradiction with the fact the
LHS is a polynomial in λ and must therefore be regular. The only way out of this paradox
is for the poles to cancel, the condition for which is precisely the Bethe equations (1.3).

Interestingly, it is possible to solve the T-Q equation (4.3) numerically for both T (λ)
and Q(λ); and then, by finding the zeros of Q(λ), determine all the solutions of the Bethe
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where N is the number of solutions with pairwise distinct roots of the Bethe equations; N
s

is the number of singular solutions; and N
sp

is the number of singular solutions that are
physical. (See Section 2 for further details.) These quantities can easily be read o↵ from
Table 1 and the supplemental tables [64] as follows: N is the number of solutions listed in a
given table; N

s

is the number of those solutions labeled with either a single ⇤ or double ⇤⇤
star; and N

sp

is the number of those solutions labeled with a double star.

N
M

1 2 3 4 5 6 7

2 (1,0,0; 1)

3 (2,0,0; 2)

4 (3,0,0; 3) (2, 1, 1; 2)

5 (4,0,0; 4) (6, 1, 0; 5)

6 (5,0,0; 5) (9, 1, 1; 9) (9, 5, 1; 5)

7 (6,0,0; 6) (15, 1, 0; 14) (20, 6, 0; 14)

8 (7,0,0; 7) (20, 1, 1; 20) (34, 7, 1; 28) (32, 21, 3; 14)

9 (8,0,0; 8) (28, 1, 0; 27) (54, 8, 2; 48) (69, 27, 0; 42)

10 (9,0,0; 9) (35, 1, 1; 35) (83, 9, 1; 75) (122, 36, 4; 90) (122, 84, 4; 42)

11 (10,0,0; 10) (45, 1, 0; 44) (120, 10, 0; 110) (209, 44, 0; 165) (252, 120, 0; 132)

12 (11,0,0; 11) (54, 1, 1; 54) (163, 10, 1; 154) (325, 55, 5; 275) (456, 163, 4; 297) (452, 330, 10; 132)

13 (12, 0, 0; 12) (66, 1, 0; 65) (220, 12, 0; 208) (494, 65, 0; 429) (792, 220, 0; 572) (919, 490, 0, 429)

14 (13, 0, 0; 13) (77, 1, 1; 77) (285, 13, 1; 273) (709, 78, 6; 637) (1281, 286, 6; 1001) (1701, 715, 15; 1001) (1701, 1287, 15; 429)

Table 2: The values (N ,N
s

,N
sp

;N � N
s

+ N
sp

) for given values of N and M , where N is the
number of solutions with pairwise distinct roots of the Bethe equations; N

s

is the number of singular
solutions; and N

sp

is the number of singular solutions that are physical.

Remarkably, the quantities N � N
s

+ N
sp

in all the entries of Table 2 coincide with�
N

M

�
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N

M�1

�
, in perfect agreement with the conjecture (2.12). Although this conjecture

was motivated from consideration of a physical model (1.1), it can be viewed solely as a
statement about the solutions of the polynomial equations (1.3) and (2.11), which begs for
a proof.

It is easy to see that the number of solutions for M = 1 is N � 1,

N (N, 1) = N � 1 . (5.1)

Moreover, for M = 2, we observe

N (N, 2) =
1

2

�
N2 + 3N + 1 + (�1)N

�
. (5.2)

It would be interesting to formulate conjectures (not to mention proofs) for N (N,M) for
M � 3.

Several remarks about the singular solutions are in order:

(i) Inspection of Table 1 and the supplemental tables [64] shows that many (but not
all) of the unphysical singular solutions (i.e., those solutions labeled by a single star
⇤) are not self-conjugate. This does not violate any theorems, since only solutions
corresponding to eigenstates of the Hamiltonian are required to be invariant under
complex conjugation [69]. Such solutions definitely do not obey the string hypothesis,
since string configurations are (by definition) self-conjugate.

(ii) For odd values of N , it appears from Table 2 that most singular solutions are un-
physical; i.e., N

sp

(N,M) = 0 for most values of M if N is odd. An exception is the
case N = 9,M = 3, for which N

sp

(9, 3) = 2; and this repeats with a periodicity of 6:
N

sp

(15, 3) = 2, etc. We expect that similar exceptions occur for higher values of M .
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where N is the number of solutions with pairwise distinct roots of the Bethe equations; N
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is the number of singular solutions that are
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Table 1 and the supplemental tables [64] as follows: N is the number of solutions listed in a
given table; N

s

is the number of those solutions labeled with either a single ⇤ or double ⇤⇤
star; and N

sp

is the number of those solutions labeled with a double star.

N
M

1 2 3 4 5 6 7

2 (1,0,0; 1)

3 (2,0,0; 2)

4 (3,0,0; 3) (2, 1, 1; 2)

5 (4,0,0; 4) (6, 1, 0; 5)

6 (5,0,0; 5) (9, 1, 1; 9) (9, 5, 1; 5)

7 (6,0,0; 6) (15, 1, 0; 14) (20, 6, 0; 14)

8 (7,0,0; 7) (20, 1, 1; 20) (34, 7, 1; 28) (32, 21, 3; 14)

9 (8,0,0; 8) (28, 1, 0; 27) (54, 8, 2; 48) (69, 27, 0; 42)

10 (9,0,0; 9) (35, 1, 1; 35) (83, 9, 1; 75) (122, 36, 4; 90) (122, 84, 4; 42)

11 (10,0,0; 10) (45, 1, 0; 44) (120, 10, 0; 110) (209, 44, 0; 165) (252, 120, 0; 132)

12 (11,0,0; 11) (54, 1, 1; 54) (163, 10, 1; 154) (325, 55, 5; 275) (456, 163, 4; 297) (452, 330, 10; 132)

13 (12, 0, 0; 12) (66, 1, 0; 65) (220, 12, 0; 208) (494, 65, 0; 429) (792, 220, 0; 572) (919, 490, 0, 429)

14 (13, 0, 0; 13) (77, 1, 1; 77) (285, 13, 1; 273) (709, 78, 6; 637) (1281, 286, 6; 1001) (1701, 715, 15; 1001) (1701, 1287, 15; 429)

Table 2: The values (N ,N
s

,N
sp

;N � N
s

+ N
sp

) for given values of N and M , where N is the
number of solutions with pairwise distinct roots of the Bethe equations; N

s

is the number of singular
solutions; and N

sp

is the number of singular solutions that are physical.

Remarkably, the quantities N � N
s

+ N
sp

in all the entries of Table 2 coincide with�
N

M

�
�

�
N

M�1

�
, in perfect agreement with the conjecture (2.12). Although this conjecture

was motivated from consideration of a physical model (1.1), it can be viewed solely as a
statement about the solutions of the polynomial equations (1.3) and (2.11), which begs for
a proof.

It is easy to see that the number of solutions for M = 1 is N � 1,

N (N, 1) = N � 1 . (5.1)

Moreover, for M = 2, we observe

N (N, 2) =
1

2

�
N2 + 3N + 1 + (�1)N

�
. (5.2)

It would be interesting to formulate conjectures (not to mention proofs) for N (N,M) for
M � 3.

Several remarks about the singular solutions are in order:

(i) Inspection of Table 1 and the supplemental tables [64] shows that many (but not
all) of the unphysical singular solutions (i.e., those solutions labeled by a single star
⇤) are not self-conjugate. This does not violate any theorems, since only solutions
corresponding to eigenstates of the Hamiltonian are required to be invariant under
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since string configurations are (by definition) self-conjugate.

(ii) For odd values of N , it appears from Table 2 that most singular solutions are un-
physical; i.e., N

sp

(N,M) = 0 for most values of M if N is odd. An exception is the
case N = 9,M = 3, for which N

sp

(9, 3) = 2; and this repeats with a periodicity of 6:
N

sp

(15, 3) = 2, etc. We expect that similar exceptions occur for higher values of M .
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sp
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Remarkably, the quantities N � N
s

+ N
sp
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N
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, in perfect agreement with the conjecture (2.12). Although this conjecture

was motivated from consideration of a physical model (1.1), it can be viewed solely as a
statement about the solutions of the polynomial equations (1.3) and (2.11), which begs for
a proof.

It is easy to see that the number of solutions for M = 1 is N � 1,

N (N, 1) = N � 1 . (5.1)

Moreover, for M = 2, we observe

N (N, 2) =
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It would be interesting to formulate conjectures (not to mention proofs) for N (N,M) for
M � 3.

Several remarks about the singular solutions are in order:

(i) Inspection of Table 1 and the supplemental tables [64] shows that many (but not
all) of the unphysical singular solutions (i.e., those solutions labeled by a single star
⇤) are not self-conjugate. This does not violate any theorems, since only solutions
corresponding to eigenstates of the Hamiltonian are required to be invariant under
complex conjugation [69]. Such solutions definitely do not obey the string hypothesis,
since string configurations are (by definition) self-conjugate.

(ii) For odd values of N , it appears from Table 2 that most singular solutions are un-
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(N,M) = 0 for most values of M if N is odd. An exception is the
case N = 9,M = 3, for which N

sp
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• Few of the singular solutions are physical

where N is the number of solutions with pairwise distinct roots of the Bethe equations; N
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is the number of singular solutions; and N
sp

is the number of singular solutions that are
physical. (See Section 2 for further details.) These quantities can easily be read o↵ from
Table 1 and the supplemental tables [64] as follows: N is the number of solutions listed in a
given table; N
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is the number of those solutions labeled with either a single ⇤ or double ⇤⇤
star; and N

sp

is the number of those solutions labeled with a double star.
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4 (3,0,0; 3) (2, 1, 1; 2)

5 (4,0,0; 4) (6, 1, 0; 5)

6 (5,0,0; 5) (9, 1, 1; 9) (9, 5, 1; 5)

7 (6,0,0; 6) (15, 1, 0; 14) (20, 6, 0; 14)

8 (7,0,0; 7) (20, 1, 1; 20) (34, 7, 1; 28) (32, 21, 3; 14)

9 (8,0,0; 8) (28, 1, 0; 27) (54, 8, 2; 48) (69, 27, 0; 42)

10 (9,0,0; 9) (35, 1, 1; 35) (83, 9, 1; 75) (122, 36, 4; 90) (122, 84, 4; 42)

11 (10,0,0; 10) (45, 1, 0; 44) (120, 10, 0; 110) (209, 44, 0; 165) (252, 120, 0; 132)

12 (11,0,0; 11) (54, 1, 1; 54) (163, 10, 1; 154) (325, 55, 5; 275) (456, 163, 4; 297) (452, 330, 10; 132)

13 (12, 0, 0; 12) (66, 1, 0; 65) (220, 12, 0; 208) (494, 65, 0; 429) (792, 220, 0; 572) (919, 490, 0, 429)

14 (13, 0, 0; 13) (77, 1, 1; 77) (285, 13, 1; 273) (709, 78, 6; 637) (1281, 286, 6; 1001) (1701, 715, 15; 1001) (1701, 1287, 15; 429)

Table 2: The values (N ,N
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+ N
sp

) for given values of N and M , where N is the
number of solutions with pairwise distinct roots of the Bethe equations; N

s

is the number of singular
solutions; and N
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is the number of singular solutions that are physical.

Remarkably, the quantities N � N
s

+ N
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in all the entries of Table 2 coincide with�
N

M
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N

M�1

�
, in perfect agreement with the conjecture (2.12). Although this conjecture

was motivated from consideration of a physical model (1.1), it can be viewed solely as a
statement about the solutions of the polynomial equations (1.3) and (2.11), which begs for
a proof.

It is easy to see that the number of solutions for M = 1 is N � 1,

N (N, 1) = N � 1 . (5.1)

Moreover, for M = 2, we observe

N (N, 2) =
1

2

�
N2 + 3N + 1 + (�1)N

�
. (5.2)

It would be interesting to formulate conjectures (not to mention proofs) for N (N,M) for
M � 3.

Several remarks about the singular solutions are in order:

(i) Inspection of Table 1 and the supplemental tables [64] shows that many (but not
all) of the unphysical singular solutions (i.e., those solutions labeled by a single star
⇤) are not self-conjugate. This does not violate any theorems, since only solutions
corresponding to eigenstates of the Hamiltonian are required to be invariant under
complex conjugation [69]. Such solutions definitely do not obey the string hypothesis,
since string configurations are (by definition) self-conjugate.

(ii) For odd values of N , it appears from Table 2 that most singular solutions are un-
physical; i.e., N

sp

(N,M) = 0 for most values of M if N is odd. An exception is the
case N = 9,M = 3, for which N

sp

(9, 3) = 2; and this repeats with a periodicity of 6:
N
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(15, 3) = 2, etc. We expect that similar exceptions occur for higher values of M .
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• Few of the singular solutions are physical

where N is the number of solutions with pairwise distinct roots of the Bethe equations; N
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is the number of singular solutions that are
physical. (See Section 2 for further details.) These quantities can easily be read o↵ from
Table 1 and the supplemental tables [64] as follows: N is the number of solutions listed in a
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is the number of those solutions labeled with either a single ⇤ or double ⇤⇤
star; and N

sp

is the number of those solutions labeled with a double star.
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3.1 The case s = 1

The results for s = 1 are summarized in Table 1. For each set of values (N,M), we report a
set of five integers:

(N ,Ns ,Nsp ,Nstrange ;N −Ns +Nsp +Nstrange) ,

where N is the number of solutions of the Bethe equations with pairwise distinct roots; Ns

is the number of singular solutions (i.e., that contain ±i, 0) with pairwise distinct roots; Nsp

is the number of such singular solutions that are physical (i.e., that satisfy (2.7) with s = 1);
and Nstrange is the number of solutions with repeated roots that are physical. The quantities
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Table 1: The values (N ,Ns ,Nsp ,Nstrange ;N −Ns +Nsp + Nstrange) for s = 1 and given values
of N and M .

We observe that, up to N = 8, all the strange solutions contain ±i , 0 , 0, and the remain-
ing M − 4 roots satisfy (B.16)

M
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(
λj + 2i
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)

= (−1)N . (3.1)

These solutions are listed in Table 2.2 It remains an open question whether there exist
additional types of strange solutions for s = 1 and N > 8.

3.2 The case s = 3/2

The results for s = 3/2 are summarized in Tables 3 and 4. Here the singular solutions
contain ±3i/2 ,±i/2; and the physical singular solutions satisfy (2.7) with s = 3/2. Up to
N = 7, the quantities N −Ns+Nsp+Nstrange in all the entries of these tables coincide with
n(N, 3N

2 −M), in agreement with the conjecture (2.6).

Our results for N = 8 and M = 6, 8, 10, 12 are inconclusive. As it stands, the conjecture
(2.6) is not exactly satisfied for these cases. Agreement would be restored if there exist a
small number of strange solutions (as indicated by the entries marked with “?” in Tables
3 and 4). We speculate that these missing solutions are of the type (B.20). However, as
discussed in Section B.2.2, we have not been able to derive the consistency condition(s) for
such solutions. The inequality (2.8) is nevertheless satisfied for these cases.
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(2.6) is not exactly satisfied for these cases. Agreement would be restored if there exist a
small number of strange solutions (as indicated by the entries marked with “?” in Tables
3 and 4). We speculate that these missing solutions are of the type (B.20). However, as
discussed in Section B.2.2, we have not been able to derive the consistency condition(s) for
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ing M − 4 roots satisfy (B.16)
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These solutions are listed in Table 2.2 It remains an open question whether there exist
additional types of strange solutions for s = 1 and N > 8.

3.2 The case s = 3/2

The results for s = 3/2 are summarized in Tables 3 and 4. Here the singular solutions
contain ±3i/2 ,±i/2; and the physical singular solutions satisfy (2.7) with s = 3/2. Up to
N = 7, the quantities N −Ns+Nsp+Nstrange in all the entries of these tables coincide with
n(N, 3N

2 −M), in agreement with the conjecture (2.6).

Our results for N = 8 and M = 6, 8, 10, 12 are inconclusive. As it stands, the conjecture
(2.6) is not exactly satisfied for these cases. Agreement would be restored if there exist a
small number of strange solutions (as indicated by the entries marked with “?” in Tables
3 and 4). We speculate that these missing solutions are of the type (B.20). However, as
discussed in Section B.2.2, we have not been able to derive the consistency condition(s) for
such solutions. The inequality (2.8) is nevertheless satisfied for these cases.
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3.2 The case s = 3/2

The results for s = 3/2 are summarized in Tables 3 and 4. Here the singular solutions
contain ±3i/2 ,±i/2; and the physical singular solutions satisfy (2.7) with s = 3/2. Up to
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• Homotopy continuation is a useful tool for checking 
completeness of polynomial Bethe ansatz equations
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• Characterization of strange singular solutions (s>1) ?


