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The problem

Multidimensional consistency: We know that many ”integrable” equations, discrete
and continuous possess the property of multidimenional consistency.

I continuous: commuting flows, higher symmetries & master symmetries,
hierarchies;

I discrete: consistency-around-the-cube, Bäcklund transforms, higher continuous
symmetries, commuting discrete flows

In all these cases we can think of the dependent variable a (possibly vector-valued)
function of many (discrete and continuous) variables

u = u(n,m, h, . . . ; x , t1, t2, . . . )

on which we can impose many equations simultaneously, and it is the compatibility of
those equations that makes the integrability manifest.

Key question: How to capture the property of multidimensional consistency within a
Lagrange formalism?

Main problem: We note that the conventional variational principle, through the EL
equations, only produces one equation per component of the dependent variables, but
not an entire system of compatible equations on one and the same dependent variable!
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Multidimensional consistency on the lattice

quadrilateral P∆Es on the 2D lattice:

Q(u,T1u,T2u,T1T2u; p1, p2) = 0

notation of shifts on the elementary
quadrilateral on a rectangular lattice:

u := u(n1, n2), T1u = u(n1 + 1, n2)
T2u := u(n1, n2 + 1), T1T2u = u(n1 + 1, n2 + 1)
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Verifying consistency: Values at the black disks are initial values, values at open
circles are uniquely determined from them, but there are three different ways to
compute T1T2T3u.



Conventional variational formalism: discrete Euler-Lagrange equations
Define an action functional:

S[u(n1, n2)] =
∑

n1,n2∈Z
L (u,T1u,T2u; p1, p2) .

Following the usual least-action principle, the lattice equations for u are determined by
the demand that S attains a minimum under local variations
u(n1, n2)→ u(n1, n2) + δu(n1, n2). Thus,

δS =
∑

n1,n2∈Z

{
∂

∂u
L (u,T1u,T2u; p1, p2)δu +

∂

∂T1u
L (u,T1u,T2u; p1, p2)δ(T1u)

+
∂

∂T2u
L (u,T1u,T2u; p1, p2)δ(T2u)

}
= 0

Setting δ(Ti u) = Tiδu, and resumming each of the terms we get:

0 =
∑

n1,n2∈Z

{
∂

∂u
L (u,T1u,T2u; p1, p2) +

∂

∂u
L (T−1

1 u, u,T−1
1 T2u; p1, p2)

+
∂

∂u
L (T−1

2 u,T1T−1
2 u, u; p1, p2)

}
δu

(ignoring boundary terms) and since δu is arbitrary the discrete Euler-Lagrange (EL)
equation follow:

∂

∂u

[
L (u,T1u,T2u; p1, p2) + L (T−1

1 u, u,T−1
1 T2u; p1, p2) + L (T−1

2 u,T1T−1
2 u, u; p1, p2)

]
= 0

In principle we can have such Lagrangians in every pair of shifts on a multidimensional
lattice. However, this doesn’t tell us a priori that the corresponding EL equations are
compatible.
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Closure relation and Lagrangian multiform structure

Closure property: Multidimensionally consistent systems of lattice equations, possess
Lagrangians which obey the following relation 1:

∆1L (u,T2u,T3u; p2, p3) + ∆2L (u,T3u,T1u; p3, p1) + ∆3L (u,T1u,T2u; p1, p2) = 0

on the solutions of the equations.
Here ∆i = Ti − id denotes the difference operator, i.e.. on functions f of
u = u(n1, n2, n3) we have: ∆i f (u) = f (Ti u)− f (u).

• This property suggests that the Lagrangians Li,j = L (u,Ti u,Tj u; pi , pj ) should be
considered as difference forms (i.e., discrete differential forms) for which the closure
property means that these forms are closed, but only for functions u which solve the
lattice equation.
• Furthermore, as a consequence of this closedness of the corresponding Lagrangian
2-form on solutions of the equations, the corresponding action will be locally invariant
under deformations of the underlying geometry of the lattice, i.e. locally independent
of the discrete surface in the space of independent variables.
• However, off-shell, i.e. for general field configurations (i.e. values of the dependent
variable u as a function of the lattice) the action is non-trivial functional of those
fields, and also of the lattice-surface on which we evaluate the action.

1S. Lobb & FWN: Lagrangian multiforms and multidimensional consistency, J. Phys. A:Math Theor. 42 (2009)
454013.
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Closure relation and Lagrangian multiform structure

Closure property: Multidimensionally consistent systems of lattice equations, possess
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of the discrete surface in the space of independent variables.
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Example: H1 (lattice potential KdV eq.)
The equation is

Q(u,T1u,T2u,T1T2u; p1, p2) = (u − T1T2u)(T1u − T2u) + p2
1 − p2

2 = 0

The equation in the “3-leg form” is

(u + T1u)− (u + T2u) +
p2

1 − p2
2

u − T1T2u
= 0

The corresponding 3-point Lagrangian is given as2

L (u,T1u,T2u; p1, p2) = u(T1u − T2u) + (p2
1 − p2

2) ln(T1u − T2u)

The discrete Euler-Lagrange equations lead to a slightly weaker equation than H1
itself, but equivalent to a discrete derivative of the equation:

T1u − T−1
2 u +

p2
1 − p2

2

u − T1T−1
2 u

+ T−1
1 u − T2u +

p2
1 − p2

2

u − T−1
1 T2u

= 0

2Capel, H.W., F.W. Nijhoff and V.G. Papageorgiou. Complete Integrability of Lagrangian Mappings and
Lattices of KdV Type. Physics Letters A, 1991: 155, pp.377-387.
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Closure property for H1:
The lagrangian for H1 obeys the following closure relation:

∆1L (u,T2u,T3u; p2, p3) + ∆2L (u,T3u,T1u; p3, p1) + ∆3L (u,T1u,T2u; p1, p2) = 0

on the solutions of the quadrilateral equation.
Proof: From the explicit form of the Lagrangians we find

∆1L (u, u2, u3; p2, p3) + ∆2L (u, u3, u1; p3, p1) + ∆3L (u, u1, u2; p1, p2)

= (u1,2 − u1,3)u1 + (p2
2 − p2

3) ln(u1,2 − u1,3)− (u2 − u3)u − (p2
2 − p2

3) ln(u2 − u3)

+(u2,3 − u1,2)u2 + (p2
3 − p2

1) ln(u2,3 − u1,2)− (u3 − u1)u − (p2
3 − p2

1) ln(u3 − u1)

+(u1,3 − u2,3)u3 + (p2
1 − p2

2) ln(u1,3 − u2,3)− (u1 − u2)u − (p2
1 − p2

2) ln(u1 − u2)

wehere we have used the abbreviations: ui := Ti u, ui,j := Ti Tj u . Noting that the
differences between the double-shifted terms has the form

u1,2 − u1,3 =
(p2

2 − p2
3)u1 + (p2

3 − p2
1)u2 + (p2

1 − p2
2)u3

(u1 − u2)(u2 − u3)(u3 − u1)
(u2 − u3)

=: A1,2,3(u2 − u3)

where A1,2,3 is invariant under permutations of the indices, the expression reduces to

A1,2,3(u2 − u3)u1 + (p2
2 − p2

3) ln
(
A1,2,3(u2 − u3)

)
−(u2 − u3)u − (p2

2 − p2
3) ln(u2 − u3)

+A1,2,3(u3 − u1)u2 + (p2
3 − p2

1) ln
(
A1,2,3(u3 − u1)

)
−(u3 − u1)u − (p2

3 − p2
1) ln(u3 − u1)

+A1,2,3(u1 − u2)u3 + (p2
1 − p2

2) ln
(
A1,2,3(u1 − u2)

)
−(u1 − u2)u − (p2

1 − p2
2) ln(u1 − u2) = 0
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Closure relation for other cases

The closure property was proven for many other lattice equations, but it often requires
a specific form of the Lagrangian (taking into account that there is the freedom to
add total-“derivative” terms).
• All equations in the ABS (Adler-Bobenko-Suris) list of scalar affine-linear equations;
• Higher-rank equations of the lattice Gel’fand-Dikii hierarchy (including lattice
Boussinesq systems);
• Higher-dimensional case of the lattice KP system.
In many cases these Lagrangians contain the function F (u) = u ln u or the
dilogarithm function

Li2(z) = −
∫ z

0
z−1 ln(1− z) dz

and the closure property relies on the Rogers 5-term relation (pentagon relation):

Li2

(
x

1 − y

y

1 − x

)
= Li2

(
x

1 − y

)
+ Li2

(
y

1 − x

)
− Li2(x) − Li2(y)

− ln(1 − x) ln(1 − y)

In cases of elliptic lattice systems requires an elliptic analogue of the dilogarithm:
F (u) ∼

∫ u ln(σ(x)) dx .
An example of such a case is the Q4 equation, due to V. Adler:

pi (u ui + uj ui,j )− pj (u uj + ui ui,j )− pij (u ui,j + ui uj ) + pi pj pij (1 + u ui uj ui,j ) = 0

where (as before) ui := Ti u, ui,j = Ti Tj u. The parameters are in terms of Jacobi

elliptic functions: pi =
√

k sn(αi ; k) , pj =
√

k sn(αj ; k) , pij =
√

k sn(αi − αj ; k) .
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Surface-dependent actions
The closure relation suggests the introduction of surface-dependent actions.

Discrete case:
action functional on a discrete surface σ:

S[u(n);σ] =
∑

σij (n)∈σ
Lij (n)

where Lij (n) has the interpretation of a discrete Lagrangian 2-form:
These are oriented expressions of the form:

Lij (n) = L (u(n), u(n + ei ), u(n + ej ); pi , pj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by the
ordered triplet σij (n) = (n, n + ei , n + ej )

n

ei

ej

σ a discrete surface in the multidimensional lattice consisting of (a connected
configuration of) elementary plaquettes σij (n)



Surface-dependent actions
The closure relation suggests the introduction of surface-dependent actions.

Discrete case:
action functional on a discrete surface σ:

S[u(n);σ] =
∑

σij (n)∈σ
Lij (n)

where Lij (n) has the interpretation of a discrete Lagrangian 2-form:
These are oriented expressions of the form:

Lij (n) = L (u(n), u(n + ei ), u(n + ej ); pi , pj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by the
ordered triplet σij (n) = (n, n + ei , n + ej )

n

ei

ej

σ a discrete surface in the multidimensional lattice consisting of (a connected
configuration of) elementary plaquettes σij (n)



Surface-dependent actions
The closure relation suggests the introduction of surface-dependent actions.

Discrete case:
action functional on a discrete surface σ:

S[u(n);σ] =
∑

σij (n)∈σ
Lij (n)

where Lij (n) has the interpretation of a discrete Lagrangian 2-form:
These are oriented expressions of the form:

Lij (n) = L (u(n), u(n + ei ), u(n + ej ); pi , pj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by the
ordered triplet σij (n) = (n, n + ei , n + ej )

n

ei

ej

σ a discrete surface in the multidimensional lattice consisting of (a connected
configuration of) elementary plaquettes σij (n)



Surface-dependent actions
The closure relation suggests the introduction of surface-dependent actions.

Discrete case:
action functional on a discrete surface σ:

S[u(n);σ] =
∑

σij (n)∈σ
Lij (n)

where Lij (n) has the interpretation of a discrete Lagrangian 2-form:
These are oriented expressions of the form:

Lij (n) = L (u(n), u(n + ei ), u(n + ej ); pi , pj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by the
ordered triplet σij (n) = (n, n + ei , n + ej )

n

ei

ej

σ a discrete surface in the multidimensional lattice consisting of (a connected
configuration of) elementary plaquettes σij (n)



Surface-dependent actions
The closure relation suggests the introduction of surface-dependent actions.

Discrete case:
action functional on a discrete surface σ:

S[u(n);σ] =
∑

σij (n)∈σ
Lij (n)

where Lij (n) has the interpretation of a discrete Lagrangian 2-form:
These are oriented expressions of the form:

Lij (n) = L (u(n), u(n + ei ), u(n + ej ); pi , pj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by the
ordered triplet σij (n) = (n, n + ei , n + ej )

n

ei

ej

σ a discrete surface in the multidimensional lattice consisting of (a connected
configuration of) elementary plaquettes σij (n)



Surface-dependent actions
The closure relation suggests the introduction of surface-dependent actions.

Discrete case:
action functional on a discrete surface σ:

S[u(n);σ] =
∑

σij (n)∈σ
Lij (n)

where Lij (n) has the interpretation of a discrete Lagrangian 2-form:
These are oriented expressions of the form:

Lij (n) = L (u(n), u(n + ei ), u(n + ej ); pi , pj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by the
ordered triplet σij (n) = (n, n + ei , n + ej )

n

ei

ej

σ a discrete surface in the multidimensional lattice consisting of (a connected
configuration of) elementary plaquettes σij (n)



Surface-dependent actions
The closure relation suggests the introduction of surface-dependent actions.

Discrete case:
action functional on a discrete surface σ:

S[u(n);σ] =
∑

σij (n)∈σ
Lij (n)

where Lij (n) has the interpretation of a discrete Lagrangian 2-form:
These are oriented expressions of the form:

Lij (n) = L (u(n), u(n + ei ), u(n + ej ); pi , pj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by the
ordered triplet σij (n) = (n, n + ei , n + ej )

n

ei

ej

σ a discrete surface in the multidimensional lattice consisting of (a connected
configuration of) elementary plaquettes σij (n)



Surface-dependent actions
The closure relation suggests the introduction of surface-dependent actions.

Discrete case:
action functional on a discrete surface σ:

S[u(n);σ] =
∑

σij (n)∈σ
Lij (n)

where Lij (n) has the interpretation of a discrete Lagrangian 2-form:
These are oriented expressions of the form:

Lij (n) = L (u(n), u(n + ei ), u(n + ej ); pi , pj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by the
ordered triplet σij (n) = (n, n + ei , n + ej )

n

ei

ej

σ a discrete surface in the multidimensional lattice consisting of (a connected
configuration of) elementary plaquettes σij (n)



Surface independence

Independence of the action S under local deformations of the surface is equivalent to
the closure relation holding.

S ′ = S −L (u, ui , uj ;αi , αj ) + L (uk , ui,k , uj,k ;αi , αj ) + L (ui , ui,j , ui,k ;αj , αk )

+L (uj , uj,k , ui,j ;αk , αi )−L (u, uj , uk ;αj , αk )−L (u, uk , ui ;αk , αi )

taking into account the orientation of the plaquettes.
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Basic configurations for 2D lattice EL system
The following configurations constitute the elementary surface actions from which the
system of 2D discrete EL equations for 2-forms are derived.

Figure : Flat 2d space.

This represents the ”planar” EL equations.
The following represent EL over curved surfaces:

Figure : Configurations when embedded in 3d.
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Fundamental System of EL eqs for 2-forms

The above configurations correspond to en exhaustive list of elementary actions given
by the sum of 3-point Lagrangians L (u,Ti (u),Tj (u);αi , αj ) in the multidimensional
regular lattice, around a given vertex. Computing the EL equations for these actions
we get the fundamental system of equations:

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) + L (u,Ti u,Tj u; pi , pj ) + L (T−1

j u,Ti T
−1
j u, u; pi , pj )

)
= 0,

∂

∂u

(
L (u,Ti u,Tj u; pi , pj ) + L (u,Tj u,Tk u; pj , pk ) + L (u,Tk u,Ti u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) − L (u,Tj u,Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

j (u), u,T−1
j Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0.

Furthermore, imposing that the action remains invariant under (discrete) deformations
of the surface (allowing the above equations to hold simultaneously) the system is
supplemented with the closure relation:

∆i L (u,Tj u,Tk u; pj , pk ) + ∆j L (u,Tk u,Ti u; pk , pj ) + ∆kL (u,Ti u,Tj u; pi , pj ) = 0 .

Main hypothesis: The solutions of above linear system of equations for the
Lagrangians L correspond exactly to the Lagrangians for integrable (in the sense of
multidimensional consistency) quadrilateral lattice systems.



Fundamental System of EL eqs for 2-forms

The above configurations correspond to en exhaustive list of elementary actions given
by the sum of 3-point Lagrangians L (u,Ti (u),Tj (u);αi , αj ) in the multidimensional
regular lattice, around a given vertex. Computing the EL equations for these actions
we get the fundamental system of equations:

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) + L (u,Ti u,Tj u; pi , pj ) + L (T−1

j u,Ti T
−1
j u, u; pi , pj )

)
= 0,

∂

∂u

(
L (u,Ti u,Tj u; pi , pj ) + L (u,Tj u,Tk u; pj , pk ) + L (u,Tk u,Ti u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) − L (u,Tj u,Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

j (u), u,T−1
j Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0.

Furthermore, imposing that the action remains invariant under (discrete) deformations
of the surface (allowing the above equations to hold simultaneously) the system is
supplemented with the closure relation:

∆i L (u,Tj u,Tk u; pj , pk ) + ∆j L (u,Tk u,Ti u; pk , pj ) + ∆kL (u,Ti u,Tj u; pi , pj ) = 0 .

Main hypothesis: The solutions of above linear system of equations for the
Lagrangians L correspond exactly to the Lagrangians for integrable (in the sense of
multidimensional consistency) quadrilateral lattice systems.



Fundamental System of EL eqs for 2-forms

The above configurations correspond to en exhaustive list of elementary actions given
by the sum of 3-point Lagrangians L (u,Ti (u),Tj (u);αi , αj ) in the multidimensional
regular lattice, around a given vertex. Computing the EL equations for these actions
we get the fundamental system of equations:

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) + L (u,Ti u,Tj u; pi , pj ) + L (T−1

j u,Ti T
−1
j u, u; pi , pj )

)
= 0,

∂

∂u

(
L (u,Ti u,Tj u; pi , pj ) + L (u,Tj u,Tk u; pj , pk ) + L (u,Tk u,Ti u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) − L (u,Tj u,Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

j (u), u,T−1
j Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0.

Furthermore, imposing that the action remains invariant under (discrete) deformations
of the surface (allowing the above equations to hold simultaneously) the system is
supplemented with the closure relation:

∆i L (u,Tj u,Tk u; pj , pk ) + ∆j L (u,Tk u,Ti u; pk , pj ) + ∆kL (u,Ti u,Tj u; pi , pj ) = 0 .

Main hypothesis: The solutions of above linear system of equations for the
Lagrangians L correspond exactly to the Lagrangians for integrable (in the sense of
multidimensional consistency) quadrilateral lattice systems.



Fundamental System of EL eqs for 2-forms

The above configurations correspond to en exhaustive list of elementary actions given
by the sum of 3-point Lagrangians L (u,Ti (u),Tj (u);αi , αj ) in the multidimensional
regular lattice, around a given vertex. Computing the EL equations for these actions
we get the fundamental system of equations:

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) + L (u,Ti u,Tj u; pi , pj ) + L (T−1

j u,Ti T
−1
j u, u; pi , pj )

)
= 0,

∂

∂u

(
L (u,Ti u,Tj u; pi , pj ) + L (u,Tj u,Tk u; pj , pk ) + L (u,Tk u,Ti u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) − L (u,Tj u,Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

j (u), u,T−1
j Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0.

Furthermore, imposing that the action remains invariant under (discrete) deformations
of the surface (allowing the above equations to hold simultaneously) the system is
supplemented with the closure relation:

∆i L (u,Tj u,Tk u; pj , pk ) + ∆j L (u,Tk u,Ti u; pk , pj ) + ∆kL (u,Ti u,Tj u; pi , pj ) = 0 .

Main hypothesis: The solutions of above linear system of equations for the
Lagrangians L correspond exactly to the Lagrangians for integrable (in the sense of
multidimensional consistency) quadrilateral lattice systems.



Fundamental System of EL eqs for 2-forms

The above configurations correspond to en exhaustive list of elementary actions given
by the sum of 3-point Lagrangians L (u,Ti (u),Tj (u);αi , αj ) in the multidimensional
regular lattice, around a given vertex. Computing the EL equations for these actions
we get the fundamental system of equations:

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) + L (u,Ti u,Tj u; pi , pj ) + L (T−1

j u,Ti T
−1
j u, u; pi , pj )

)
= 0,

∂

∂u

(
L (u,Ti u,Tj u; pi , pj ) + L (u,Tj u,Tk u; pj , pk ) + L (u,Tk u,Ti u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

i u, u,T−1
i Tj u; pi , pj ) − L (u,Tj u,Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0,

∂

∂u

(
L (T−1

j (u), u,T−1
j Tk u; pj , pk ) + L (T−1

i u,T−1
i Tk u, u; pk , pi )

)
= 0.

Furthermore, imposing that the action remains invariant under (discrete) deformations
of the surface (allowing the above equations to hold simultaneously) the system is
supplemented with the closure relation:

∆i L (u,Tj u,Tk u; pj , pk ) + ∆j L (u,Tk u,Ti u; pk , pj ) + ∆kL (u,Ti u,Tj u; pi , pj ) = 0 .

Main hypothesis: The solutions of above linear system of equations for the
Lagrangians L correspond exactly to the Lagrangians for integrable (in the sense of
multidimensional consistency) quadrilateral lattice systems.



Interplay Discrete ←→ Continuous

The lattice systems we consider here admit a role reversal:
lattice parameters pi ↔ lattice variables ni

For all quadrilateral P∆Es we have fully consistent system of equations comprising
three types of equations, all compatible discrete as well as continuous.

P∆E ↔ D∆E ↔ PDE

These D(∆)Es can be simultaneously imposed on the same dependent variables:

u = u(n1, n2, n3, . . . ; p1, p2, p3, . . . )
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Linear Case

P∆E Fully discrete Lagrangian:

Lij = w(Ti w − Tj w)−
1

2

(
pi + pj

pi − pj

)(
(Ti − Tj )w

)2
,

Linear quadrilateral lattice equation:

(pi + pj )(Ti − Tj )w − (pi − pj )(id− Ti Tj )w = 0 .

The lattice Lagrangian Lij obeys the closure relation:

∆i Ljk + ∆j Lki + ∆kLij = 0

on solutions of the lattice equation.

D∆E Linear differential-difference equation:

2pi
∂w

∂pi
= ni (T−1

i − Ti )w ,

Semi-discrete Lagrangian:

Li = ni w
∂

∂pi
Ti w − pi

(
∂w

∂pi

)2

.

Question: Is there a semi-discrete analogue of the closure relation?
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PDE Fully continuous equation;

∂pi ∂pj (p2
i − p2

j )∂pi ∂pj w = 4(nj∂pi − ni∂pj )
1

p2
i − p2

j

(nj p
2
i ∂pi − ni p

2
j ∂pj )w ,

has a Lagrangian:

Lij =
1

nj ni

{
1

2
(p2

i −p2
j )(∂pi ∂pj w)2+(n2

j (∂pi w)2−n2
i (∂pj w)2)+

p2
i + p2

j

p2
i − p2

j

(nj∂pi w−ni∂pj w)2

}
The continuous Lagrangian Lij obeys the closure relation:

∂pi Ljk + ∂pj Lki + ∂pk Lij = 0

on solutions of the continuous equation.
Since the PDE is of higher order, this requires additional relations, e.g.,

nk (p2
i − p2

j )∂pi ∂pj w + ni (p2
j − p2

k )∂pj ∂pk w + nj (p2
k − p2

i )∂pi ∂pk w = 0



Nonlinear case

P∆E Fully discrete Lagrangian:

Lij = u(Ti u − Tj u) + (p2
i − p2

j ) ln
(
Ti u − Tj u

)
,

Linear quadrilateral lattice equation(H1):

(u − Ti Tj u)(Ti uTj u) + p2
i − p2

j = 0 .

The lattice Lagrangian Lij obeys the closure relation:

∆i Ljk + ∆j Lki + ∆kLij = 0

on solutions of the lattice equation.

D∆E The D∆E analogue of H1 is given by the relations:

∂u

∂pi
=

2ni pi

Ti u − T−1
i u

It can be shown that this equation is compatible with H1.
A Lagrangian for the D∆E is given by

Li = u
∂

∂pi
Ti u + 2ni pi log

(
∂

∂pi
Ti u

)



Nonlinear case

P∆E Fully discrete Lagrangian:

Lij = u(Ti u − Tj u) + (p2
i − p2

j ) ln
(
Ti u − Tj u

)
,

Linear quadrilateral lattice equation(H1):

(u − Ti Tj u)(Ti uTj u) + p2
i − p2

j = 0 .

The lattice Lagrangian Lij obeys the closure relation:

∆i Ljk + ∆j Lki + ∆kLij = 0

on solutions of the lattice equation.

D∆E The D∆E analogue of H1 is given by the relations:

∂u

∂pi
=

2ni pi

Ti u − T−1
i u

It can be shown that this equation is compatible with H1.
A Lagrangian for the D∆E is given by

Li = u
∂

∂pi
Ti u + 2ni pi log

(
∂

∂pi
Ti u

)



PDE The following coupled system of PDEs follows from the D∆E and the P∆E:

∂2u

∂pi ∂pj
=

1

p2
i − p2

j

[
2ni pi

∂u

∂pj
− 2nj pj

∂u

∂pi
− 2vij

∂u

∂pi

∂u

∂pj

]
,

∂2vij

∂pi ∂pj
=

∂

∂pi

[
(∂u/∂pj )v2

ij + 2nj pj vij

p2
i − p2

j

]
+

∂

∂pj

[
(∂u/∂pi )v2

ij − 2ni pi vij

p2
i − p2

j

]
,

where vij = (Ti − Tj )u , and which derives as EL equations from the following
Lagrangian:

Lij = vij

(
∂2u

∂pi ∂pj
−

2ni pi (∂u/∂pj )− 2nj pj (∂u/∂pi )

p2
i − p2

j

)
+

1

p2
i − p2

j

v2
ij

∂u

∂pi

∂u

∂pj
.

The latter Lagrangian obeys the closure relation

Lij

∂pk
+

Ljk

∂pi
+

Lki

∂pj
= 0 ,

(albeit with a condition on the ”form field” vij ).
Alternatively, there is a Lagrangian for u alone yielding the higher-order PDE in u:

Lij =
1

4
(p2

i − p2
j )

(∂pi ∂pj u)2

(∂pi u)(∂pj u)
+

1

p2
i − p2

j

(
n2

i p2
i

∂pj u

∂pi u
+ n2

j p2
j

∂pi u

∂pj u

)
.

Remark: The corresponding ”hierarchy generating PDE” [FWN, A Hone and N Joshi,
(2000)] (it encodes the entire KdV hierarchy), was shown to be closely related to the
Ernst equation of General Relativity.
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Variational formalism for continuous Lagrangian 2-forms
In the continuous case, the closure relation suggests again that the Lij should be
considered as components of a Lagrangian 2-form, which is closed on the solutions of
the equations of the motion!
The action S , defined on an arbitrary surface σ (embedded in an arbitrary number of
dimensions) takes the form:

S[u(p);σ] =

∫
σ

∑
i<j

Li,j dpi ∧ dpj =

∫∫
Ω

∑
i<j

{
Li,j

∂(pi , pj )

∂(s, t)

}
ds dt ,

where Lij = −Lji , and where in the latter form we assume that the surface σ can be
(smoothly) parametrized by functions p(s, t) = (pi (s, t)), Ω being an open set in the
space of s and t-parameters. Here the Lagrangian typically takes the form:

Li,j = L (u, ∂i u, ∂j u, ∂i∂j u; pi , pj ) .

The variational equations, under which we demand S to be stationary, follow from two
types of variations:
• Variations of the surface: σ → σ + δσ , (i.e., making a infinitesimal variations
p 7→ p + δp, in the parametrisation). This leads to the closure relation:

∂pi Lj,k + ∂pj Lk,i + ∂pk Li,j = 0.

• Infinitesimal variations of the dependent variable u 7→ u + δu, on an arbitrary, but
fixed, surface. This has two contributions:
♦ contributions from derivatives along the surface (i.e. tangential contributions);
♦ contributions from derivatives transversal (or orthogonal) to the surface.
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Variational principle for Lagrange 1-forms
To propose a system of Lagrangians associated with higher-time variables
t = (t1, t2, . . . ) we consider a Lagrangian 1-form:

L =
∑

k

Lk (x(t), xt1 (t), xt2 (t), . . . ) dtk

with components Lk . The action becomes a functional of the type

S[x(t); Γ ] =
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where the functions (t(s)) , s0 ≤ s ≤ s1 form a parametrization of the curve Γ.
The variational calculus in terms of 1-forms involves two types of variations:

I variations t(s)→ t(s) + δt(s) of the curve, i.e. Γ→ Γ′

I variations x(t)→ x + δx(t) of the dependent variables on a fixed curve Γ;
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Generalized Euler-Lagrange equations
The corresponding set of EL equations (in the 2-time case) comprises the following
relations:

I variations w.r.t. the independent variables leads to a closure relation in the form

∂L2

∂t1
=
∂L1

∂t2
,

I variations w.r.t. the dependent variables leads to a (compatible) system of
Euler-Lagrange equations on an arbitrary curve Γ,

∂L1

∂x

dt1

ds
+
∂L2

∂x

dt2

ds
−

d

ds

{
1

‖dt/ds‖2
×[(

dt1

ds

)2 ∂L1

∂xt1

+

(
dt1

ds

)(
dt2

ds

)(
∂L1

∂xt2

+
∂L2

∂xt1

)
+

(
dt2

ds

)2 ∂L2

∂xt2

]}
= 0 ,

I a system of constraint equations

∂L2

∂xt1

(
dt2

ds

)2

+

(
∂L1

∂xt1

−
∂L2

∂xt2

)
dt1

ds

dt2

ds
−
∂L1

∂xt2

(
dt1

ds

)2

= 0.

Remark: This scheme applies to the cases of the Calogero-Moser, the (finite) Toda
chain and the Ruijsenaars-Schneider systems, and leads to the construction of the
system of Lagrangians for the higher-order (commuting flows). These are mixed
Lagrangians in all the time-derivatives.
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Summary

I All the explicit examples studied so far seem to point to the general validity of
the closure property for well-chosen Lagrangians for integrable lattice systems and
continuous integrable hierarchies of PDEs. This seem to indicate that the
relevant variational principle for integrable (multidimensionally consistent)
systems is that of a description in terms of Lagrangian multiforms.

I The main motivation is to formulate a least-action principle that produces the
whole system of multidimensionally consistent equations, rather than a single
equation of the motion.

I This new variational principle brings in an essential way the geometry of the
independent variables.

I The variational principle determines not only the equations for the classical
trajectories of the system, but more prominently it selects the admissable
Lagrangians as solutions of the system of generalized EL equations.

I The close interplay between compatible continuous and discrete structures,
exhibiting a role reversal of parameters and independent variables, seems to
indicate that both are aspects of one and the same structure.

I There is much less freedom of choice in the Lagrangian components of the
multiform structure. This may be a route towards the ”inverse problem of
Lagrangian dynamics”.

I The main motivation comes from quantum theory: the quantum analogue of the
classical Lagrangian formalism being the path integral, it is of interest to
generalize the multiform structure to a (novel) path integral description.
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Possible implications for physics

1. Integrable systems seem to correspond to topological field theories. In fact,
integrable hierarchies of matrix PDEs in 1+1 dimensions can be shown to have a
Lagrangians formalism in terms of the Wess-Zumino-Witten-Novikov (WZNW)
action with:3:

L = tr
(
∂`g · ∂`′g−1

)
+
`′ + `

`′ − `

∫ 1

0
dt tr

(
[∂`g · g−1, ∂`′g · g−1]

dg

dt
· g−1

)
.

(where the ` and `′ are variables like the lattice parameters pi , i.e. so-called Miwa
variables). In 2+1-dimensional hierarchies of integrable systems there are
connections with Chern-Simons theory over loop algebras.

2. An unexpected relation between KdV theory and the Ernst equations of General
Relativity (describing gravitational waves) emerge from the generating PDEs,
which are the PDEs in terms of the lattice parameters pi . In the case of the
Boussinesq system those same equations are related to the Einstein-Maxwell-Weyl
equations (for gravitational waves in the presence of Maxwell and neutrino fields).
[Tongas, Tsoubelis & Xenitidis, 2001; Tongas & FN, 2005]

3. Within the Lagrangian multi-form scheme, ”integrable Lagrangians” arise as
critical points, reminiscent of renormalization theory. In fact, at those critical
points the system loses ”sensitivity for dimensionality” and allows for the
co-existence of a discrete and continuous spaces of independent variables on
which they are defined (insensitivity w.r.t. the lattice scale).

3F.W. Nijhoff, Integrable Hierarchies, Lagrangian Structures and Non-commuting Flows, Eds. M.J. Ablowitz, B.
Fuchssteiner and M. Kruskal, in: Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, pp. 150–181,
Signapore, World Scientific Publ. Co. , 1987.
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integrable hierarchies of matrix PDEs in 1+1 dimensions can be shown to have a
Lagrangians formalism in terms of the Wess-Zumino-Witten-Novikov (WZNW)
action with:3:

L = tr
(
∂`g · ∂`′g−1

)
+
`′ + `

`′ − `

∫ 1

0
dt tr

(
[∂`g · g−1, ∂`′g · g−1]

dg

dt
· g−1

)
.

(where the ` and `′ are variables like the lattice parameters pi , i.e. so-called Miwa
variables). In 2+1-dimensional hierarchies of integrable systems there are
connections with Chern-Simons theory over loop algebras.

2. An unexpected relation between KdV theory and the Ernst equations of General
Relativity (describing gravitational waves) emerge from the generating PDEs,
which are the PDEs in terms of the lattice parameters pi . In the case of the
Boussinesq system those same equations are related to the Einstein-Maxwell-Weyl
equations (for gravitational waves in the presence of Maxwell and neutrino fields).
[Tongas, Tsoubelis & Xenitidis, 2001; Tongas & FN, 2005]

3. Within the Lagrangian multi-form scheme, ”integrable Lagrangians” arise as
critical points, reminiscent of renormalization theory. In fact, at those critical
points the system loses ”sensitivity for dimensionality” and allows for the
co-existence of a discrete and continuous spaces of independent variables on
which they are defined (insensitivity w.r.t. the lattice scale).

3F.W. Nijhoff, Integrable Hierarchies, Lagrangian Structures and Non-commuting Flows, Eds. M.J. Ablowitz, B.
Fuchssteiner and M. Kruskal, in: Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, pp. 150–181,
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Possible implications for quantum theory
Paul Dirac, in his seminal paper4 of 1933, stated:
”The two formulations [namely that of Hamilton and of Lagrange] are, of course,
closely related but there are reasons for believing that the Lagrangian one is more
fundamental.”
Dirac’s paper contains already the key ideas underlying the path integral, later
introduced by Feynman.

Based on the Lagrangian 1-form structure that was shown to hold for several
many-body systems (e.g. the CM and RS system) one could make a (tentative)
proposal for a quantum Lagrange multi-form theory in the form of a path integral.
Thus, one could postulate (à la Feynman) a 1-form quantum propagator:

K(xb, tb, sb; xa, ta, sa) =

∫ t(sb)=tb

t(sa)=ta

[Dt(s)]

∫ x(tb)=xb

x(ta)=xa

[DΓx(t)] exp

(
i

~
S[x(t); Γ]

)
.

Here:
I [DΓx(t)] is some path integral measure along a curve Γ in the space of dependent

variables x(t);
I Γ is a curve in the space of independent variables, parametrised by the parameter

s ∈ [sa, sb], bounded by the points t(sa) = ta and t(sb) = tb;
I [Dt(s)] is some path integral measure in the space of independent variables;
I the action functional S is given by the Lagrangian 1-form action:

S[x(t); Γ] =

∫
Γ
L ·dt =

∫ sb

sa

ds
N∑

j=1

Lj (x(t(s)), xt1 (t(s)), . . . , xtN (t(s)); t(s)) ·
dtj

ds
.

4P.A.M. Dirac, The Lagrangian in Quantum Mechanics, Physikalische Zeitschrift der Sowjetunion, Bd. 3, Heft
1, (1933)
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