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Introduction

Basic question to discuss: How to extend the Poisson
structure on the space of differential/difference
operators to the space of wave functions.

Special cases:
First order matrix differential/difference operators
Higher order differential/difference operators.
In particular, second order differential/difference
operators related to Virasoro algebra

Two approaches to second order operators:
Virasoro algebra
Drinfeld–Sokolov theory.

Both approaches need a non-trivial generalization in the
difference case related to lattice and q-deformed
versions of Virasoro algebra.

– p. 2/32



Exchange algebra

The case of current algebra on the line is already non-trivial
as it leads to a peculiar symmetry breaking (first noticed by
Babelon) Let C(g) be the space of connections on the line
with values in a Lie algebra g equipped with a
non-degenerate invariant inner product. C(g) may be
identified with (a hyperplane in) the dual space of the central
extension of the current algebra C∞(R; g) and hence carries a
natural Poisson structure (the so called Schwinger Poisson
bracket). The current group C∞(R;G) acts on C(g) by gauge
transformations,

g : L �→ Adg · L+ ∂xg · g−1. (1)

Let W (g) be the space of wave functions, i. e., of G-valued
solutions of the differential equation

∂xψ = Lψ.
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Exchange algebra

We want to equip W (g) with a Poisson structure such that
the natural mapping

W (g) → C(g) : ψ �→ ∂xψ · ψ−1

is Poisson. Since the gauge action (1) is Hamiltonian with
respect to the natural Poisson structure on C(g), the
Poisson structure on W (g) should be left-invariant. Let us
choose this Poisson structure in the following form:

{ψ1(x), ψ2(y)} = ψ1(x)ψ2(y)r12(x− y), (2)

One would like to make this Poisson structure also invariant
with respect to constant right shifts ψ �→ ψ · h which amount
to the change of basis in the space of solutions. A natural
guess is r12(x− y) = t12ε(x− y), where ε(x− y) is the sign
function (distribution kernel of ∂−1).
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Exchange algebra

It is instructive to write the r-matrix associated with
ε(x− y) = ∂−1 as a singular integral operator given formally
by

rX(x) =
1

2π

∫ ∞

−∞
X̂(k)

ik
eikx dk, (3)

This operator needs to be regularized, which introduces a
peculiar symmetry breaking and brings into play a finite
dimensional r-matrix action on constant functions:

rX(x) = r0(X̂(0)) + v.p.
1

2π

∫ ∞

−∞
X̂(k)

ik
eikx dk, (4)
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Exchange algebra

We have 0r+ −0 r− = t; this yields

r′x(x−y) = −r′y(x−y) = tδ(x−y), r′′xy(x−y) = −tδ′(x−y), (5)

and hence

{L1(x), L2(y)} = [t, L1(x)− L2(y)]δ(x− y)− tδ′(x− y), (6)

i. e., the correct Schwinger Poisson structure on C(g). Note
that r0 cancells out!
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Difference case

We shall generalize Exchange algebra to the case of
difference operators.
To set up a general framework for the difference case let us
assume that G is a Lie group equipped with an
automorphism τ Let G = Gτ be the group of
“quasi-constants”, G = {g ∈ G; gτ = g}.
The “auxiliary linear problem” reads:

ψτψ−1 = L.

There is a natural action of G on itself by left multiplication
which induces gauge transformations for L:

g : ψ �→ g · ψ,L �→ gτLg−1.

The quasi-constants act by right multiplications, ψ �→ ψh
and leave L invariant.
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Natural realizations

There are three natural realizations of this scheme:

G consists of functions on a lattice Z with values in a
matrix group G and τ is a shift operator; it is also
possible to introduce multi-dimensional lattices with
several commuting shift automorphisms.

G consists of functions of the line with gτ (x) = g(x+ 1).

G consists of functions which are meromorphic in C∗
and τ acts by gτ (z) = g(qz), q �= 1.

In the 1st case, the group of quasi-constants consists of
genuine constant functions on the lattice with values in G, in
the 2nd case it consists of G-valued periodic functions on
the line, in the 3d, it consists of elliptic functions on the
elliptic curve Eq = C∗/qZ.
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Choice of a Poisson structure

In the differential case, the gauge action is Hamiltonian. In
the difference case it is not; rather, the gauge group itself
carries the structure of a Poisson Lie group and the gauge
action is Poisson; the same applies to the right
multiplications. This suggests the following
Definition. For f ∈ Fun(G) we denote by ∇f ,∇′

f its left
and right gradients defined by

〈∇f (ψ), ξ〉 = d

dt

∣∣∣∣
t=0

f(etξψ), 〈∇′
f (ψ), ξ〉 =

d

dt

∣∣∣∣
t=0

f(ψetξ).

We put

{f1, f2} = 〈l(∇f1),∇f2〉+ 〈r(∇′
f1),∇′

f2〉.
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Choice of a Poisson structure – 2

Here l and r are two (a priori, different) classical r-matrices.
In tensor form this formula may be written as

{ψ1, ψ2} = l12ψ1ψ2+ψ1ψ2r12, where ψ1 = ψ⊗I, ψ2 = I⊗ψ.
(7)

(7) is an abstract version of the Exchange algebra. The
main question, of course, is to restrict and explain the
choice of l and r.
Easy observations.

For a given l the gauge action becomes Poisson if the
gauge group carries the Sklyanin bracket associated
with l.

Left and right bracket are almost independent, but they
are linked via the Jacoby/Yang–Baxter identity.
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Contribution of l

A simple computation. Recall that l, r ∈ End g, where is
the Lie algebra of G. We assume that they commute with τ
(which we now regard as an automorphism of g). Suppose
that f(ψ) = F (ψτψ−1). We denote by XF , X

′
F left and right

gradients of F . Then

{f1, f2}l (ψ) = 〈l(X1), X2〉+〈l(X ′
1), X

′
2〉−〈l◦τ−1(X1), X

′
2〉−〈τ◦l(X ′

1), X2〉.

Equivalently, this yields for L = ψτψ−1:

{L1, L2}l = lL1L2 + L1L2l − L1l
τL2 − L2l

τ−1

L1.

This formula resembles the “lattice current algebra”, but it
differs from it in some crucial terms and so is not yet
satisfactory. The Jacobi identity fails!
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The role of r

The rescue comes through the choice of r which appears to
be very rigid.
Key observation. The mapping ψ �→ ψτψ−1 is Poisson if
and only if :

r = r0+
τ + I

τ − I
, where r0 acts in the subspace of quasi-constants.

Explanation. Left gradient of f(ψ) = F (ψτψ−1) depends
only on left and right gradients of F (regarded as a function
of L = ψτψ−1). By contrast, its right gradient depends on ψ.
After some calculations, one gets explicitly:

{f1, f2}r (ψ) = 〈(r − τ · r + r − r · τ−1)Adψ−1X ′
1,Adψ

−1X ′
2〉.

Our mapping is Poisson if and only if Adψ−1 cancels.
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The role of r

Remarkably, this cancellation is achieved by a simple and
unique choice r = τ+I

τ−I if we assume that τ − I is invertible.

Proposition. Assume that τ − I is invertible. Then r = τ+I
τ−I

satisfies the modified classical Yang–Baxter identity

[rX, rY ]− r([rX, Y ] + [X, rY ]) + [X,Y ] = 0;

It is skew iff τ is orthogonal. With our choice of r, the
contribution of the right bracket finally becomes

{f1, f2}r (ψ) = 〈X1, τX
′
2〉 − 〈τX ′

1, X2〉.
The above formula precisely provides the missing terms
to convert the left bracket for L’s into the correct lattice
algebra.

The formula we derived fixes the choice of r up to the
subspace of quasi-constants.
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r as a singular integral operator

When τ is a translation operator, gτ (x) = g(x+ 1), the
Cayley transform r = (1 + τ)(1− τ)−1 is a singular integral
operator formally given by

(rf)(x) =
1

2πi

∫ ∞

−∞
cotan(k/2)f̂(k)eikx dk. (8)

For f ∈ C∞
0 (R; g) we set

F (x) =

∞∑
n=−∞

f(x+ n);

clearly, F is 1-periodic and hence lies in the kernel of 1− τ .
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r as a singular integral operator

In order to regularize (8) we use the standard decomposition
of cotan(k/2) into simple fractions and the Poisson formula

F (x) =

∞∑
n=−∞

f̂(2πn)e2πinx.

The regularization of (8) is given by

(rf)(x) = r0(F (x)) + v.p.
1

2π

∫ ∞

−∞
cotan(k/2)f̂(k)eikx dk, (9)

where r0 is acting pointwise in the subspace of
quasiconstants. This is very similar to the case of exchange
algebra; the choice of r is now fully explained.
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q-difference case

In q-difference case, when gτ (z) = g(qz), the Cayley
transform r = (1 + τ)(1− τ)−1 is completely characterized
by its distribution kernel given by the formal series

r(z, z′) = rδ(z/z′),

where

δ(z/z′) =
∞∑

n=−∞
(z/z′)n

is the Dirac delta function.
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q-difference case

Set z/z′ = t; we get

r(z, z′) =
∞∑

n=−∞,n �=0

1 + qn

1− qn
tn =

∞∑
n=1

(
1 + qn

1− qn
tn +

1 + q−n

1− q−n
t−n

)
=

∞∑
n=1

(tn−t−n)+2

∞∑
n=1

qn

1− qn
(tn−t−n) = t+ 1

t− 1
+2

∞∑
n=1

qn

1− qn
(tn−t−n).

Put z = eix, z′ = eix
′
; we get a Fourier series expansion of

r(z, z′) on the unit circle,

r(z, z′) =
1

i
cotan(x− x′/2) + 4i

∞∑
n=1

qn

1− qn
sinn(x− x′). (10)
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q-difference case

It is easy to see that the r.h.s. is essentially the logarithmic
derivative of Jacobi’s theta function θ1 (the difference is due
to the fact that in the standard definition the (quasi)-periods
of θ1 are 2 and q2 = e2πiτ , while in our case they are 2π and
q). Note also that r(z, z′) is not quite ‘elliptic’, since the
logarithmic derivative of θ1 is invariant with respect to
translations by 2πiτ only up to an additive constant. If we
regard (10) as the kernel of a singular integral operator on
the unit circle, its regularization may be achieved in the
same way as above (now the only pole of the kernel which
lies on the unit circle is x = 0 (other poles, which coincide
with the roots of θ1 are associated with the points of the
multiplicative lattice qn).
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On difference Galois group

Both in rational and in trigonometric case, the
regularization introduces just a finite dimensional
r-matrix r0. This prescription is perfectly in line with the
difference Galois theory. Consider a typical q-difference
equation, ψ(qz) = L(z)ψ(z), where L is a matrix with
rational coefficients Lik ∈ C(z). A difference Galois
extension Fψ ⊃ C(z) is generated by adjoining to C(z)

matrix coefficients of its (particular) solution. According
to a theorem of P.Etingof, the corresponding difference
Galois group is finite-dimensional; it consists of
constant matrices and is a closed subgroup of the
infinite-dimensional group of quasi-constants).
Generically, this group coincides with the full special
linear group SL(n); it naturally inherits the Poisson
structure induced by the finite dimensional r-matrix r0.
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Lattice case

Important example: Difference operators on a lattice
Γ = Z with periodic boundary conditions. This means that
we assume L = ψτψ−1 and the gauge group acting by left
translations to be N -periodic.
One can show that in this case the right r-matrix is given by

r(n,m) = 1
2tε(n−m) + r0, (11)

where

ε(n) = signn =

⎧⎪⎨
⎪⎩

1, n > 0,

0, n = 0,

−1, n < 0.

and r0 ∈ g⊗ g is a constant r-matrix independent of n,m.
This brings us back to (lattice) exchange algebra.

– p. 20/32



Monodromy matrix on the lattice

There are two definitions of the monodromy matrix in this
setting:

M = ψNψ
−1
0 , or

M̃ = ψ−1
0 ψN .

Of course, M and M̃ are conjugate, but their transformation
properties are very different: M is invariant with respect to
the right action of the group of quasi-constants (which in
this case (almost) coincides with the difference Galois
group, while M̃ is gauge invariant. Hence M̃ is adapted to
reduction over the subgroups of the gauge group. On the

other hand, M =
�∏
nLn and hence the Poisson bracket

relations for M are easily computable.
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Monodromy matrix on the lattice – 2

We assume that the left r-matrix is constant (does not
depend on the argument n ∈ Z)
Theorem.

Equip G with the Poisson bracket

{f1, f2}l (M) = 〈l(X1), X2〉+ 〈l(X ′
1), X

′
2〉 − 〈l+(X1), X

′
2〉 − 〈l−(X ′

1), X2〉,

where as usual X1, X2, X
′
1, X

′
2 stand for left and right

gradients of f1, f2. The mapping

G → G : (Ln) �→M =
�∏
Ln

is Poisson.

Gauge action of the gauge group on the monodromy by
conjugation is Poisson. – p. 22/32



Monodromy matrix on the lattice – 3

By contrast, Poisson bracket relations for M̃ depend mainly
on r. In the lattice case the kernel r = I+τ

I−τ + r0 is explicitly
computable.
Theorem.

The mapping M̃ : G → G : ψ �→ ψ−1
0 ψN is Poisson with

respect to the dual Poisson bracket on G,

{f1, f2}l (M̃) =

〈r0(X1), X2〉+ 〈r(X ′
1), X

′
2〉−〈r0+(X1), X

′
2〉−〈r0−(X ′

1), X2〉,
(12)
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Monodromy matrix on the lattice – 4

This bracket is Poisson covariant with respect to the
action of the difference Galois group by conjugation.

To assure that Poisson brackets for both versions of the
monodromy matrix are the same we may simply assume
that r0 = l.
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q-deformed Drinfeld–Sokolov theory

Proposition. An n-th order difference equation

τnφ+ un−1τ
n−1 · φ+ un−2τ

n−2 · φ+ ...+ u1τ · φ+ φ = 0

is associated with the scalar 1st order equation

τ · ψ + Lψ = 0,

with L = Us−1, where

s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1

−1 0 · · · 0 0

0 −1 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 0 0

0 0 · · · −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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q-deformed Drinfeld–Sokolov theory

is the Coxeter matrix and

U =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0

u1 u1 · · · un−1 1

⎞
⎟⎟⎟⎟⎟⎠
. (13)

Taking L in this canonical form gives a set of constraints
which serve to realize the reduced phase space (over the
gauge action of the unipotent upper triangular group); the
construction is self-consistent if and only if these
constraints are first class, which imposes severe restrictions
on the choice of l:
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q-deformed Drinfeld–Sokolov theory

l = P+ − P− +
1 +Rsτ

1− Rsτ
P0,

where the projection operators P+, P,P0 are associated with
the pointwise triangular decomposition and Rs is the
Coxeter automorphism of h = P0g induced by s.
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Poisson bracket for the monodromy

In the difference Drinfeld–Sokolov setting the proper
definition of monodromy is M̃ , which is gauge invariant and
hence survives the reduction. As before, it is natural to
choose r0 which is consistent with the choice of l. This
gives

r0 = P+ − P− +
1 +Rs
1− Rs

P0

Note that the correction term vanishes for SL(2), since in
this case Rs = −I. With this choice we get a consistent
Poisson bracket for the monodromy which is covariant with
respect to the action of the difference Galois group
(equipped with the Sklyanin bracket associated with r0).
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The space of wave functions

We now come up to the extension of the deformed Poisson
Virasoro structure to the space of wave functions.
Fundamental solutions of the first order linear problem
ψτ = Lψ are functions with values in G. By contrast, wave
functions of a scalar n-th order difference equation form an
n-tuple (φ1, . . . , φn) ∈ Cn \ {0}. Up to a natural equivalence
this set of wave functions defines a point in CPn−1. To
match these descriptions note that the gauge group N− acts
on wave functions by left translations, n · ψ(x) = n(x)ψ(x).
The quotient space N−\G may be identified with the space
of functions with values in the principal affine space N−\G.
The Cartan subgroup H ⊂ G normalizes N− and hence
there is a natural action H ×N−\G→ N−\G and the
associated pointwise action H× N−\G → N−\G.
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The space of wave functions

When G = SL(2,C), the quotient HN−\G is isomorphic to
the projective space CP1 and HN−\G is the space of
projectivized wave functions of the second order difference
equation.
In the general case, when the potential of the first order
matrix difference equation in canonical form L = Us−1, its
matrix wave function ψ has the simple ‘Vandermonde’ form,

ψ =

⎛
⎜⎜⎜⎝

φ1 φ2 . . . φn

φτ1 φτ2 . . . φτn
. . . . . . . . .

φτ
n−1

1 φτ
n−1

2 . . . φτ
n−1

n

⎞
⎟⎟⎟⎠ . (14)

and is completely determined by its first row.
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The space of wave functions

Let H0 ⊂ H ⊂ SL(n) be the 1-dimensional subgroup
consisting of degenerate diagonal matrices
h = diag (t, . . . , t, s), det h = 1. Let M ′

0 be the centaliser of H0

in G = SL(n) and M0 its maximal semisimple subgroup; let
N0 ⊂ N− be the unipotent subgroup defined in (13). The
subgroup P0 =M0H0N0 ⊂ G is a maximal parabolic
subgroup which contains the standard Borel subgroup
B = HN−. We regard M0N0\G as an affine algebraic
variety; its affine ring A(M0N0\G) is generated by the matrix
coefficients of the first row of the matrix g ∈ G. Since
M0N0 ⊃ N , this affine ring is canonically embedded into the
affine ring of N−\G. The multi-scaling action of the Cartan
subgroup H on the affine ring A(N\G) induced by the
natural action H ×N−\G→ N−\G may be restricted to
A(M0N0\G) and amounts to the scaling action of the rank 1
subgroup H0 ⊂ H.
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The space of wave functions

The quotient M0H0N0\G is isomorphic to the projective
space CPn−1; the associated space of functions with values
in M0H0N0\G is precisely the space of projectivized wave
functions of the n-th order difference equations.

Example For n = 2 we get the Poisson structure for the
projectivized wave functions:

{η(m), η(m)} = η(m)2−η(n)2−sign(m−n) (η(m)− η(n))2 .
(15)

This Poisson bracket is covariant with respect to the
projective transformation group PSL(2) equipped with
the standard Poisson structure; the Poisson structure in
the space of projective invariants yields a lattice version
of the Virasoro algebra.
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