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We consider form factors of the monodromy matrix entries
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It is enough to obtain a determinant representation for only one
form factor, say, the one of T55(z). Representations for all other
form factors follow from it by special transforms and limits.



We consider form factors of the monodromy matrix entries

((@)| Ty ()" ("))

Here (y)(u)| and [¢/(@')) are eigenstates of the transfer matrix
T(z) =trT(z). The monodromy matrix T(z) is 3 x 3

T11(z) Ti2(z) T13(%2)
T51(z) Too(z) To3(2)
T31(z) T32(z) T33(%2)

It is enough to obtain a determinant representation for only one
form factor, say, the one of T55(z). Representations for all other
form factors follow from it by special transforms and limits.

Similar statement is true for the GL(N) case.
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Sets of variables
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Products over the sets

Te,e’(fw): H Te,e’(wk)
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Sets of variables

u={ui,...,uq}, v=A{v1,...,v}, w={wi,...

Products over the sets

Te,e’(fw): H Te,e’(wk)

wk€@

g(ﬂavj) — H g(ukavj)
ULEU

fla,o9) = 11 11 fCuj, o)

UjEﬂ VLEV
Special subsets
U =\ u, flaj,uj) = [ flug,uy)

ULEU
UM#Uj

71Un}



Bethe vectors

Rio(u,v)T1(u)T2(v) = To(v)T1(u)Ri2(u, v)

We consider a generalized model with a pseudovacuum
vector |0) and dual pseudovacuum vector (O]

T;;(w)[0) = r;(u)|0), Tjp(w)[0) =0, j>k
(0|7} (u) = rj(u)(O], O|Tjp(u) =0, j<k

One can set one of r;(u) equals to 1 without loss of
generality. Other rj(u) remain free functional parameters

(generalized model). We set r>(u) = 1.



Bethe vectors

We |look for the eigenvectors of the transfer matrix

T(w) =trT'(w) = T11(w) + Too(w) + T33(w)



Bethe vectors

We |look for the eigenvectors of the transfer matrix
T(w) =trT(w) = T11(w) + Too(w) + T33(w)

The first step is to construct special polynomials in creation
operators (Ty2, T13, T1»3) applied to the pseudovacuum |0)
(Bethe vectors).

Nested algebraic Bethe ansatz
P. Kulish, N. Reshetikhin, '83
V. Tarasov, A. Varchenko '95

S. Belliard, S. Khoroshkin, S. Pakuliak, E. Ragoucy '08, '10



Bethe vectors

We |look for the eigenvectors of the transfer matrix

T(w) =trT'(w) = T11(w) + Too(w) + T33(w)

B*"(4; 5) = P(T;5(ug), Tij(vp) ) [0), 1 <J

e <l &I



Bethe vectors

We |look for the eigenvectors of the transfer matrix

T(w) =trT'(w) = T11(w) + Too(w) + T33(w)

[
S
.

B (i; 5) = P(Ty5(up), Ty () )|0), i<

Q< og
|
S
l—l

Normalization
P(Tyi(up), Tij(vp) ) = £~ 1@, @) Th2(0)T23(0) + . ..

We say that IB%a’b(ﬁ; v) is a Bethe vector, if the
parameters v and v are generic complex numbers.



Bethe vectors

We |look for the eigenvectors of the transfer matrix

T(w) =trT'(w) = T11(w) + Too(w) + T33(w)

B (i; 5) = P(Ty5(up), Ty () )|0), i<

We say that B*®(@; %) is an on-shell Bethe vector, if the
parameters v and v satisfy the system of Bethe equations

_ fug, ug) _ e ( _ J(ug, vg) _
1(ug) = f(ﬂka’t%)f( ,UL), 3(vg) f(vkﬂk)f( ks U)
Recall: up, = U\ ug, flug,ag) = [ fug,us)

U/Sea
UsFUL



Dual Bethe vectors

Dual Bethe vectors are special polynomials in annihilation
operators (T»1, 131, 13p) applied to the dual pseudovacuum (O].

U ..
C(u;v) = <O|P<Tz‘j(uk)aTz’j(Uk))7 1> V= V1,0,

a
Normalization

P(Ty(ug), Tij(vp) ) = £~ (@, @) To1(@)T32(0) + -

We say that (C“’b(ﬁ;z‘)) is a dual on-shell Bethe vector, if the
parameters v and v satisfy the system of Bethe equations

fug,ug) , — _ f(og, vg)
f (ug, uk)f(v’ k) r3(ok) = f (v, vg)

f(vka 77’)

r1(ug) =



Transfer matrix eigenvalues

On-shell Bethe vectors are eigenvectors
of the transfer matrix 7 (w) = tr T'(w).

T (w)B*"(u; v) = A(w|w,v) B¥(a; v)

C»(w; o) T (w) = A(w|a, v) C*(a; v)



Transfer matrix eigenvalues

On-shell Bethe vectors are eigenvectors
of the transfer matrix 7 (w) = tr T'(w).

T (w)B*"(u; v) = A(w|w,v) B¥(a; v)
C»(w; o) T (w) = A(w|a, v) C*(a; v)
ANwl|u,v) = ri(w) f(a,w) + f(w,u) f(v,w) + r3(w) f(w, )

f(Uk,ﬂk)f@, ). ra(op) = f (v, vi)

f(ug, ug) f (v, Ek)f(vk’ 2

r1(ug) =



Form factors of T, .(z)
F9 () = FU5D a0, 5% a8, 57) = ¢ @ 5°) T, (=) BN (@ 5%)

Here both C%Y(@C; %) and B%P(aB: 55) are on-shell Bethe vectors.



Form factors of T, .(z)
(‘56)( )_ (66)(Z|u _C,ﬁB —B) — Ca b(u —C) /(Z) B% b(u —B)

Here both C%Y(@C; %) and B%P(aB: 55) are on-shell Bethe vectors.

r (uB (ukz’ ) 58 B on: (ﬁlw L) —B

) = FE S D, s = 1 )

() =4 (“k’ G, ) = PO £y 56
( f( k: k;

Generically {a%,9°} and {ua”, v”} are different solutions
of Bethe equations.



Form factors of T, .(z)

(‘56)()_ (66)(Z|u _C,ﬁB —B)_Ca b(u —C) /(Z)Bab(u —B)

The integers a and b are fixed. Then

a = a4+ 5671 — 56/71,

b' =b+ 643 —bc3.

The parameter z is an arbitrary complex.



Form factors and morphisms

(‘56)( )_ (66)(Z| —C —B —B) _Ca b(u —C) /(Z)]Bab(u —B)

There exist 9 matrix elements T, /(z), thus there exist
O form factors. However not all of them are independent
due to symmetries of the R-matrix and morphisms of
the RTT = TTR relation.
FLlz) FlL2(z) FL3(2)
F(z) = | F21(z) F22(2) F23(2)
F3l(2) F32(2) F33(2)



Form factors and morphisms

FED () = F4D 1ac, 5% aP, 57) = C (@ 59) T, o (2) B (@7 5)

There exist 9 matrix elements T, /(z), thus there exist
O form factors. However not all of them are independent
due to symmetries of the R-matrix and morphisms of
the RTT = TTR relation.
FLlz)y FL2(z) FL3(2)
F(z) = | F21(z) F22(2) F23(2)
F3l(2) F32(2) F33(2)

Y 1 Ti(u) = Ty(u)

o 1 Ti(u) =  Ta_ja_i(—u)



Form factors and morphisms

(‘56)( )_ (66)(Z| —C —B —B) _Ca b(u —(J) /(Z)Bab(u —B)

There exist 9 matrix elements T, /(z), thus there exist
O form factors. However not all of them are independent
due to symmetries of the R-matrix and morphisms of
the RTT = TTR relation.
Fhlz) Fl2(z) 7
F(z) = | F>1(z) F22(2) F23(2)
F3l(2) F32(2) F33(2)

The key tool for the calculation of FL:.1(2), F22(2), and F1:2(2)
is a formula for the scalar product of generic Bethe vectors

(N. Reshetikhin'86). This formula describes the scalar product
as a sum over partitions of Bethe parameters.



All the determinant representations for form factors

where obtained in the framework of the generalized model.
This means that the functions r1(z) and r3(z) are considered
as free functional parameters.



All the determinant representations for form factors

where obtained in the framework of the generalized model.
This means that the functions r1(z) and r3(z) are considered
as free functional parameters.

Restriction:
r1(z) =14+ 01, Z — 00

r3(z) = 14+ 0D, Z — 00



Zero modes

We consider the standard generating series of Yangian

ee’(z) = 56 o+ Z T(n) —n
n=1

and study the action of the zero modes T(l)
on Bethe vectors B*’(u;7) and C%*(u; v)

Te(,‘]s'/)IB%Gyb(’L_l,; ’l_]) Ca’b(’lj; 6)T€(7,]5-/)



Zero modes

We consider the standard generating series of Yangian

66/(,2) = 56 ¢! -+ Z T(n) —n
n=1

and study the action of the zero modes T(l)
on Bethe vectors B*’(u;7) and C%*(u; v)

1 -, = —. - 1
TE(,E,)IB%a’b(u; V) Ca’b(u; fu)Te(,e,)

The action of zero modes on Bethe vectors in GL(N)
is known (E. Mukhin, V. Tarasov, A. Varchenko'06)



Zero modes

We consider the standard generating series of Yangian

66/(,2) = 56 ¢! -+ Z T(n) —n
n=1

and study the action of the zero modes T(l)
on Bethe vectors B*’(u;7) and C%*(u; v)

1 -, = —. - 1
TE(,E,)IB%a’b(u; V) Ca’b(u; fu)Te(,e,)

This action follows from the one of T, .(z)
on B*’(%; %) and C%*(u: )



Action of zero modes

In particular:

(Dnabr=. =\ — 1 a+1,b/y— =

175 B (u, v) = lim wB ({u,w}; v)
(Dmabr=. =y — i ab+l/—. ;=

153’ B (u, v) = lim wB (u; {v,w})

Ca,b(ﬂ; Z_J)TQ(%) — w“_r;r]oow Ca+1’b({ﬂ, w}; ’17)

cob(a; p)TE) = 1im w cP ({5, w})

w—r0o0



Action of zero modes

In particular:

T VBeb(w;5) = lim w BT (i, w}; v)

w—00
(Dnabr=. =\ —_ | ab+1/=. =
T53’B*"(u, v) = Jim w B (u; {v,w})
Ca,b(,a; E)TQ(%) — w“_rf‘oow Ca+1’b({ﬂ, ’UJ}; )

cob(a; p)TE) = 1im w cP ({5, w})

w— 00

If Bethe vectors are normalized by 1, then one can simply
write BeTL0({@, 0o}; 0), C0T1(u; {v,00}) and so on.



Action of zero modes

In particular:

(Dmabr=. = — s~ Jriu) f(ugu) 0 O\ na—1b/- .
TRV D) = ¢ 3 { TGN — 1) [ @

b _
ab/=. — (vi) f (v;, v;) _ ab—1/—.
7358 ’b<u,v>=—cizzl{r3 f‘;(%g)” —f(fvi,fvz')}ﬂ% b1 (a;

(Ca’b(’l_L, Z—J)Tfé) — C@;{Tl(q}z()%it; u’l,) B f(’U,Z, a@)}ca—l,b(az’

b . .
(Ca’b(ﬂ; E)TQ(%) — _Ci;{r?,(?;z()i’(;z)a v;) _ f(’l_)i,’vi)}(ca’b_l(’t_b;



Action of zero modes

In particular:

TQ(%)IBa’b(’L_L; 1_}) — . i {T’l(uz’)f(’az’; uz) - f(ui,’c_bi)}Ba_l’b(fL_Li;

i=1 f(v,u;)

b . .
Té%)Ba’b(’lj, ’l_)) — ¢ Z {T3(U’L)f(v27vz) . f(?_)i,vi)}Ba’b_l(’a;

i=1 f(v’ia ’l_j’)

(Ca’b(”(_l,; )Tl(é) — . za: {Tl(uz)f(amuz) B f(ui,’t_bi>}ca_1’b(ﬂz‘;

i=1 f(v,u;)

(Ca,b(u TQ%) — Z {r3(vz)f(vz, v;) — (5, fl)i)}(ca’b_l(”t_b;

i=1 f (v, u)

if B%%(%;0) and C%®(u;v) are on-shell



Action of zero modes

In particular:

TQ(%)IBa’b(’L_L; 1_}) — . i {rl(ui)f(ﬂz', uz) - f(ui,’c_bi)}Ba_l’b(fL_bi;

i=1 f(v,u;)

b . .
Té%)Ba’b(’ﬁ, ’l_)) — ¢ Z {T3(U’L>f(v27vz) . f(?_)i,vi)}Ba’b_l(’a;

i=1 f(via ’l_j’)

(Ca’b(”(_l,; )Tl(é) — . za: {Tl(uz)f(amuz) B f(uz',l_bz‘)}ca_l’b(ﬂz‘;

i=1 f(v,u;)

(Ca,b(u TQ%) — Z {T3(Uz)f(vza v;) — (5, fl)i)}(ca’b_l(l_b;

i=1 f (v, u)

if B&b(u;v) and C%b(u;v) are on-shell and oo ¢ {u,v}.

7) =0
%) =0
7) =0
7)) =0



Special on-shell vectors
If B%Y(w;v) is an on-shell Bethe vector, then B*’({&, co}: v)
and B%Y(u: {v,00}) also are on-shell Bethe vectors.

If C»P(w;v) is a dual on-shell Bethe vector, then C*?({u,c00}; v)
and C%®(@; {v,00}) also are dual on-shell Bethe vectors.



Special on-shell vectors
If B%Y(w;v) is an on-shell Bethe vector, then B*’({&, co}: v)
and B%Y(u: {v,00}) also are on-shell Bethe vectors.

If C»P(w;v) is a dual on-shell Bethe vector, then C*?({u,c00}; v)
and C%®(@; {v,00}) also are dual on-shell Bethe vectors.

_ fug, ug) = o Con) — f (v, vg) _
r1(ug) = f(ﬂk,uk)f( ,UL),s 3(vg) f(vk,’Uk)f( ke U)
f(v,u):’l)—u—l—c, f(v,00) = f(oo,u) =1

V—U



Special on-shell vectors
If B%Y(w;v) is an on-shell Bethe vector, then B*’({&, co}: v)
and B%Y(u: {v,00}) also are on-shell Bethe vectors.

If C»P(w;v) is a dual on-shell Bethe vector, then C*?({u,c00}; v)
and C%®(@; {v,00}) also are dual on-shell Bethe vectors.

_ S Qug, ug) = o Con) — f (g, vg) _
r1(ug) = f(ﬂk,uk)f( , U ), 3(vk) f(vk,’Uk)f( ks W)
flw,u) =" f(v,00) = f(o0,u) = 1

ri(oo) =1,



Calculation of form factors

We have from RT'T-relation

[735(21), Tri(22)] = g(21, 22) (Tkj(ZQ) Ty (z1) — Tj(21) Til(22)>

Sending here one of z, to infinity we obtain commutation relations
involving zero modes.



Calculation of form factors

We have from RT'T-relation

[735(21), Tri(22)] = g(21, 22) (Tkj(ZQ) Ty (z1) — Tj(21) Til(22)>

Sending here one of z, to infinity we obtain commutation relations
involving zero modes. In particular

[T12(21), T23(22)] = g(21,22) <T22(Z2) T13(21) — To2(21) T13(22))

[T15(21), TSE] = —cTy3(21)



Calculation of form factors

¢ Ty3(2) = [T52), Ty (2)]



Calculation of form factors

¢ Ty3(2) = [T52), Ty (2)]

e CoPEITL(EC; 5O) T3 (2B (75 57) = CoTLHL (@0 ) TS, Tip(2)]BH (a7 57)

where both Cot1.0+1(7C 5C) and B*?(aB; vB) are on-shell Bethe vectors.



Calculation of form factors

¢ Ty3(2) = [T52), Ty (2)]

¢ CoHLIHL(TC, T Ty 3(2) B (@7 57) = CoH L (aC ) (T3, Tra(2)]BY (@7 57)

where both Cot1.0+1(7C 5C) and B*?(aB; vB) are on-shell Bethe vectors.

cot1.b+1 (50 50) 2(%):

if oo ¢ {uC, 57}



Calculation of form factors

¢ Ty3(2) = [T52), Ty (2)]

e CoTLOHL(F9; 59 Ty 3(2)BYY (@7 57) = ot b+ (aC; 59) [T§ TSs ) T12(2)B* (@, 5)
where both Cot1.0+1(7C 5C) and B*?(aB; vB) are on-shell Bethe vectors.
_C. - 1
cot1.b+1 (50 50) 2(3) _

if oo ¢ {uC, 57}

e CoPHITL(EY, 50 Ty 3(2) B (% 57) = —Co L (A0 59) T1o(2) T35 B (7 57)



Calculation of form factors

e CoPEITL(EC; 5 Ty (2B (a7 57) = —Co L (a0 50) Ty () Thg B (77 57)

where both Cet1L,0+1(3C: 5¢) and B®?(a?; v8) are on-shell Bethe vectors.



Calculation of form factors

e CoPEITL(EC; 5 Ty (2B (a7 57) = —Co L (a0 50) Ty () Thg B (77 57)

where both Cet1L,0+1(3C: 5¢) and B®?(a?; v8) are on-shell Bethe vectors.

TSVB (%) = lim w B (4; {5, w})

w—00

and B®»bT1(gB: {vB, 00}) is on-shell Bethe vector.



Calculation of form factors

e CoPEITL(EC; 5 Ty (2B (a7 57) = —Co L (a0 50) Ty () Thg B (77 57)

where both Cet1L,0+1(3C: 5¢) and B®?(a?; v8) are on-shell Bethe vectors.

TSVB (%) = lim w B (4; {5, w})

wW—r 00

and B®»bT1(gB: {vB, 00}) is on-shell Bethe vector.
cotLbr1(a%; 59 T3(2)BY0 (a?; oP)

= — |im Ca+1’b+1(’t_bc; ?70)T12(2)Ba’b(53; {637 w})

w
w—r00 C



Calculation of form factors

e CoPEITL(EC; 5 Ty (2B (a7 57) = —Co L (a0 50) Ty () Thg B (77 57)
where both Cet1L,0+1(3C: 5¢) and B®?(a?; v8) are on-shell Bethe vectors.
(Dmab=. = b+1
T53°BY°(u; v) = Jim w BT (%; {7, w})
and B®»bT1(gB: {vB, 00}) is on-shell Bethe vector.

CotLIFL (G0 59) T3 () B (% 57)

— _ lim 2 (C“"'l’b_I_l(ﬁC;?70)T12(Z)Ba’b(ﬁBJ{?7Ba’w})

w—r00 C

—C.—-B — . w —C. —
Fopp (10,0707, 5%) = — lim = Foi (o1, 0% @7, {7, w})



Calculation of form factors

In order to compute the form factor of Ty3(z) one should take
the determinant formula for the form factor of Ty>(z) and to
send there one of Bethe parameters to infinity

o —p — w o
]:a,b(z|“ v u”, B)—_JLr,noo_ b—|—1(z| v’ a”, {v”, w})



Calculation of form factors

In order to compute the form factor of Ty3(z) one should take
the determinant formula for the form factor of Ty>(z) and to
send there one of Bethe parameters to infinity

- —B — w - —
L G1a0, 5% a0, 5 = — lim Y FR L G, 50 a7, (57, w))

Too good to be true?



Calculation of form factors

In order to compute the form factor of Ty3(z) one should take
the determinant formula for the form factor of Ty>(z) and to
send there one of Bethe parameters to infinity

o —p — w o
]:a,b(z|“ v u”, B)——Ji“oo— b-|—1(z| v’ a”, {v”, w})

Too good to be true?

Using RT'T-relations one can derive formulas of the similar type
for other form factors, whose determinant representations are
already known.



Relations between form factors

(1 )(Z|’LL —C’ ’LLB —B) —_ _,wll_I;nOO F(}Fi)b(zhl’ —C'; {’L_LB,’U)},Q_)B)
F(l 2)(Z|’ljc —C’uB —B) — J@m%}—éi1)b(z|ﬂc —C’ {u w} —B)
(1 1)(z|u —C” UB —B) B (2 2)(z|u —C” UB —B)

im_— FL 3P el{ac, w), o ab, o)



Relations between form factors

FOA (2170, 7% 7%, %) = - Jim FOD, (2130, 57 {35, w}, 77)
FOP GGt e = Jim Y FED, Glal, 7 {7, w), )

]_—(1,1)(Z|1—LC’7—}C. 7B 5P — FCEQI),Q)(ZIU 5 5B 5B)

_ w (1 2) 5B P
= Jim = Fop? GI{ac wh, v )
Explicit representations for all these form factors were obtained
by straightforward calculations without any assumptions on the
analytical structure of T'(z). One can check that all the relations

above are indeed valid.



1,3, |—-C ~C. =B — LW 12 _C —C.-B y-
]:a,b (z|a®,v%; uB,vP) = —wll_r)nooz ]—"a,b_l_l(z|uc,vc, a’, {vP, w})

This formula was checked by independent straightforward
calculation in the particular cases:

e a>0, b= 0,

o a=b=1.



1,3, |—-C ~C. =B — LW 12 _C —C.-B y-
]:a,,b (z|a®,v%; uB,vP) = —wll_r>nooz ]—"a,b_l_l(z|uc,vc, a’, {v?, w})

This formula was checked by independent straightforward
calculation in the particular cases:

o a>0, b= 0,
e a=0b=1.

We believe that it remains valid in the general case
independently of the analytical structure of T'(z2).



Determinant formulas for form factors
F9D () = Fl99 1ac, 5% 3%, 5%) = ¢V (a0, 79T, o (2) BV (@ 5%)

(66)(2’) = H, a_lql?_’lt_lf\/'(e’el)

The pre-factor H, is (¢, €)-independent.



Determinant formulas for form factors
F9D () = Fl99 1ac, 5% 3%, 5%) = ¢V (a0, 79T, o (2) BV (@ 5%)

(“) = det AN(&€)
(Z) a b athi1
The pre-factor H, is (¢, €)-independent.

/
The matrices N(&€) for the form factors ]—"CEEI;E)
with |e — ¢/| = 1 have the most simple form.



Determinant formulas for form factors

(1 2) _ (1,2)
(z) = ab a—lql?—ilz—lN
ON ¢
[ (o) (wgluc )
N(1,2) —
8/\(£Ck|’L_I,B,’l_}B)
(*) 5,7

\

J

)

s a + 1

> b

/



Determinant formulas for form factors

(1,2) _ (1,2)
F = H, , det )
ap ()= Hap det N

( (*) 8/\(:1:k|17,c,170) \ )
3“? ra—+1
N2 — ) z = {u”
(*) a/\(xk|’ﬁB,’l_}B) > b
\ (‘9’0}9 ) J

A(w|a,v) = ri(w) f(u,w) + f(w, ) f(v,w) + r3(w) f(w,v)

/
Other ]—"CEEI;E) can be obtained from ]—"(Elb’z)
via replacement {u%, 2%} < {u?, v8}.



Determinant formulas for form factors

FG() = Hyy, det (€O

N(EO) =

a+b+1

a/\(xkh_LB) ,EB)

()

B
V-
8]

additional row

\

> a

> b

/



Determinant formulas for form factors

FuP) =H,y, det N3

A(L3) —

a+b+2

8/\(wk|ﬂB,63)
(‘9’0}9

()

s a + 1

> b

additional row )



1,3)

]'-é,b (z) = H,p det A(L1,3)

N(1’3) p

(1,3)
Notoron =

(1,3)
Natbt2,a4042

a+b42

ON(z.|u’, v¢
U=
7
ON(zp|u®, vP)
(+) o
Y
additional row )

0, k#a+b+2

s a + 1

> b

— /\(zlﬂc,fvc) — /\(z|ﬂB,

P)

Determinant formulas for form factors



Calculation of form factors

(2,2)
‘Fa,b



Calculation of form factors

]'"é,Qb’Q) : ng,z)( 72, (2,1) (32)) : féi’s)(fé,?é’l))



Calculation of form factors

2,2 1,2 2,3) £(2,1) £(3,2) (1,3) £(3,1)
]:cg,b ) ] ‘ch,b >(]:c§,b )v]:ab Fap ) - Fap Fap )

|

FoPESY)



Calculation of form factors

ffbg) : fOE,ll),Q)( 72, (2,1) (32)> : ch,llf3)(Fc§,?l)f1))

|

FoPESY)

All formulas for form factors follow from the determinant
representation for form factor ]__ngb,z)_ The last one can
be derived by the trick with the twisted transfer matrix.



Calculation of form factors

ffbg) : Fé})’Q)(F(Q 3) F(z 5} (3 2)) : fé,lb’@(FS’,’l))

|

]_-571[)71) (]:(3 3))

All formulas for form factors follow from the determinant
representation for form factor ]—"52,)’2). The last one can
be derived by the trick with the twisted transfer matrix.

Similarly, in GL(N) case a determinant representation
for one diagonal form factor F(&¢€) (if it exists!) yields
determinant formulas for all other form factors.



Questions to solve

e Complete proof of the determinant representation for
form factor of Ty3(z).

e Whether the representation is still valid for arbitrary r.(z)7
e The role of infinite solutions of Bethe equations.
e Why straightforward calculations failed?
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e Whether the representation is still valid for arbitrary r.(z)7
e The role of infinite solutions of Bethe equations.
e Why straightforward calculations failed?

e Generalization to GL(N).
e How to compute initial form factor Flee)?



Questions to solve

e Complete proof of the determinant representation for
form factor of Ty3(z).

e Whether the representation is still valid for arbitrary r.(z)7
e The role of infinite solutions of Bethe equations.
e Why straightforward calculations failed?

e Generalization to GL(N).
e How to compute initial form factor Flee)?

e Generalization to the g-deformed case.
e [ he form factor ]__ngb,z) IS computed, but there are
unexpected problems with other form factors.





