Correlations in massive phase

M. Dugave, F. Gohmann! K. Kozlowski?  J. Suzuki?

IWuppertal U.
2IMB

3Shizuoka U.

September 2014 Dijon RAQIS '14

J. Suzuki et al Correlations in massive phase



Introduction

Evaluate (various) Form Factors in spin 3 XXZ model in (AF) massive
phase at arbitrary size or arbitrary temperatures.

The Hamiltonian (PBC)

M
_ cosh h _
HXXZ—JZ oo +o; ot + 5 n(azaf+1+1)+§af). g=e "
1=1

We assume 7, h > 0
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Introduction

Evaluate (various) Form Factors in spin 3 XXZ model in (AF) massive
phase at arbitrary size or arbitrary temperatures.

Why do we want to evaluate it?

@ The exact evaluation of correlation functions is possible only for small
separations. For A > 1, few terms in FF (or spectral) expansion is
enough to obtain good asymptotic behaviors

@ The vertex operator method yields explicit results in the infinite
volume limit.

@ The bootstrap method yields explicit results in the QFT limit.
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Introduction

Our idea to attack the problem for finite T
= “fuse” two ingredients.

@ Quantum Transfer Matrix for the thermodynamics of 1D quantum
spin chains. (M. Suzuki, “Wuppertal group”)

@ Quantum Inverse Scattering Method for matrix elements (“LOMI
group” and “Lyon group”)
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Introduction

The outline of talk

@ QTM for the thermodynamics of 1D quantum spin chains
o formal formulae for simpe FFs
@ The behavior of Bethe ansatz roots in low T limit.

@ outlook
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Formulation QT™M

QISM

e QTM method

M. Suzuki, PRB 31 (1985) 2957. J. S., Y.Akutsu and M.Wadati, JPSJ 59 (1990) 2667.
A.Kliimper, Ann. Physik 1 (1992) 540.
main idea

Use the equivalence of 1D quantum system at finite 7" and 2D classical system of
finite size NV

use a simple identity

lim Zop(N,L) = lim tr7rrr(u)? ”
N—00 N—o00
lim tr(1 + uH)Y B R
= 1am tr U U= ——
N —o00 N N[ - e-BH
= tre_‘BH = Z1p quantum(/ga L) u u
o o 0o o
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Formulation QT™M

QISM

Theorem

Consider the transfer matrix Tqrm(u) defined in fictitious dimension and
propagating horizontally. The free energy per site f is given only(!) by its largest
eigenvalue Ay

1 B
=— lim —InAg(u=—-—— T
e 2
Tarm¥o = Ao ¥y I U U Y
N u
note 1
@ real dimension L — oo «—fe—fe—t+—-U
) TQTM acts on V&N . i 1
g o o o

@ fine tuning is necessary in L
Trotter limit (N — o0)

J. Suzuki et al Correlations in massive phase



Formulation

QTM

QISM

Commuting QTM (Klimper)
Define a commuting family of
QTM, TQTM(U,QS‘)

c——
\
—

[Tqrm(u, z), Tgrm(u,y)] =0

J. Suzuki et al

More precisely, intertwined by
same R with TRTr
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Formulation QT™M

QISM

Graphic representation of (O; ---Oy,)

>

exp(-B H)
u.
<010203> - . ;u
u
0, 0, O
fﬁ«@l...()me—b’ﬂ
O,---0,,) =
{O1-+ Om) Ziv(5)
_ <‘1’0|t1"((917QTM( )) - tr(OmTqrm(0))[Wo)
Ag <‘I’0|‘I’0>
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Formulation QT™M

QISM

In terms of Density Matrix Elements,

(O1-+-0p) = Y DR 00 - Ol
a7ﬂ

oo (ol(Tara) 5l (60) - (Tar) 37 (6m) W)
(D) (€100 ) = Nl Ao(Em) (Wol T

example
(ot oy — (TOIBO)C(O)1%)
b Ag(0)?[|Wol[?
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Formulation QTM™M

QIsM

If Torm — TRTR, the technology in evaluation of DME is well developed. J

Kitanine et al, NPB 554 (1999) 647, NPB 567(2000) 55, NPB 641 (2002) 487, NPB
712 (2005) 600, JSTAT (2009) P04003, JMP 50(2009) 095209, JSTAT (2011) P05028

The essential tool is the QISM algebra

Rz —y)[T(x) © T(y)] = [T(y) @ T(x)|R(x — y)
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Formulation QTM™M

QIsM

Important observation

Tqrm shares same R with Trrr thus satisfies same QISM algebra. Thus
algebraically finite I" problem remains the same with 1" = 0 case.
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Formulation QTM™M

QIsM

Important observation

Tqrm shares same R with Trrr thus satisfies same QISM algebra. Thus
algebraically finite I" problem remains the same with 1" = 0 case.

There are differences:
@ Thermodynamic limit (M — oo). The system behaves “smoothly”.
The BAE root distribution is smooth.

@ The Trotter limit (N — o0). The coupling constant u depends on
fictitious size N. The BAE root distribution is singular.
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Formulation QTM™M

QIsM

Important observation

Tqrm shares same R with Trrr thus satisfies same QISM algebra. Thus
algebraically finite I" problem remains the same with 1" = 0 case.

There are differences:

@ Thermodynamic limit (M — oo). The system behaves “smoothly”.
The BAE root distribution is smooth.

@ The Trotter limit (N — o0). The coupling constant u depends on
fictitious size N. The BAE root distribution is singular.

Algebraic structure is same. Analytic properties are different. )
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Formulation QTM™M

QIsM

Even with singular BAE root distribution, define Auxiliary function

dn(f\|a):e T+277a( (5‘ )()\-HH-U H )\ fire — 1)

s(A+ u)s(A 4 u —1n) s\ — fix + 1)
Gn(A) = 6, (A|0) a = extraU(1) twist
1 . . .
U — s s = sinh(massive)  sin(massless)

Always possible to write Non Linear Integral Equation
(A =ik an(A) = dn(N))

211

Ina,(\a) = —% +d(\,T,N, ) —/C d—K()\ ) In(1 + ap, (plar))

Contour C,, specifies excited states s.t. BAE roots are inside, holes are
outside.
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Simple FF

Simplest FF( longitudinal )

0? (Wo W) (Wi |Wo)

X gz An(@lazan An(e) = g G TT oy

(W[ Wo)|*

Slavnov formula — a compact formula ( Dugave et al, ArXiv:1305.0118)

w detdmi Cn (1 —K_qy)detgme Cn (1-Kq)

A, (o) =e
( ) detdmg,Cn(l - ’Co)detdmﬂn(l - ]Co)
)\|a) 14 an(Ma)
W= / 27rz )'In 1+ ao(A)
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Simple FF

detgm ¢, (1 — K) is a Fredholm determinant with measure dm

(e}

detdm,Cn(1 —-K)=1+ dm(\ dethkK()\ )\j)

W d)\An()\|a)
N = R T ) O

Contour can be very complicated.

Particle
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Simple FF

To do ( low T analysis )
© Identify important ecitations and separate contributions from “Fermi

sea”.
© Asymptotic analysis on auxiliary functions, eigenvalues and
amplitudes.
© Summation over leading excitations.
Most important is the 1st step.
For |A] < 1, sum of particle-hole excitations = Cardy's formula
( Dugave et al, ArXiv 1305.0118, 1401.4132 )

T

922 ' ) T 022
050, 11) ~ ——(—2E )" + const.(cos 2mkp) (——E——
il = () eonst oot (G )
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Simple FF

@ At T > 0 one is usually only interested in the largest eigenvalue state
of TQTM-

@ Now we want to know the important excitations

@ To know them, we solve the T-Q relation (Nepomechie's talk in this
conference).
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T = 0 case reminder
T 0 case

T 0H = 0 case

1

BAE roots in low T - OH > 0 case

T=0 BAE roots

M : System Size
N, number of BAE roots in the ground state:
H: magpnetic field
Hy, H,: The lower and the upper critical field

2Jsinhn , Jsinh? n TK (k)
H,=2""}KK H,=-"—1 =
¢ T WK (k) coshn —1 " K(k)

Three phases

H < H, N, =

H/<H<H,| N, <
H>H, N, =

excitation gap
gapless
excitation gap

SISSES
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BAE roots in low T

T = 0 case reminder
> 0 case

T
T > 0H = 0 case
T

> 0H > 0 case

M =8,N, =4, = H =0, 70 states in total

Blue: BAE roots

g.s.

Red: T zeros

2nd
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0| 05
A
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T = 0 case reminder
> 0 case

T
T > 0H = 0 case
T > 0H > 0 case

BAE roots in low T

M =8,N, =3,aa=H =0, 56 states in total
Blue: BAE roots Red: T zeros
g.s. 2nd

30th. 49th

A 15 15|
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[] 05 05|
. . " P . L . . . L L n
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] -05 ~os|
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T = 0 case reminder
T 0 case

T 0H = 0 case
T

BAE roots in low T - OH > 0 case

T = 0 summary

@ BAE root locations are independent of h.

@ Hole locations are independent of A.

® Zeeman term shifts energy levels .

@ the number of BAE roots in the ground state depends on h.
If H < Hy

@ the ground state and 1 st excited state almost degenerated

o the 3 rd excitation = 2-string

@ higher excitation contains more holes

@ most of these excitations = m-strings
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T = 0 case reminder

T > 0 case

T 0H = 0O case
BAE roots in low T T > 0H > 0 case

T > 0 BAE roots : comparison

T=0 T>0
@ BAE roots locations are @ BAE roots locations depend
independent of h. on h.
@ Hole locations are @ Hole locations depend on h.

independent of h. .
inaep @ Zeeman term induces

@ Zeeman term shifts energy nontrivial level crossings .
levels . .
@ the number of BAE roots in
@ the number of BAE roots in the ground state is always
the ground state depends on %
h.
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T = O case reminder
T > 0 case

T > 0H = 0 case
BAE roots in low T T > 0H > 0 case

if H =20, even for T' > 0, BAE roots look similar : more densely
distributed
(blue BAE roots, Red T zero )

g.s. 2nd

7th 64th

15 10 05 05 10 15 15 10 05 05 10 15
05 o
104 10
15) 1
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T = O case reminder
> 0 case
> 0H = 0 case

T
T
BAE roots in low T T > 0H > 0 case

if H =0 for T' > 0, situation changes drastically.

Conjecture

For sufficiently low T, lower excitations do not involve strings. Instead, the
distribution of complex rapidities looks like Free Fermion case.

However, for T' > 1, strings do exist.

: :

How these strings disappear with decrease in T?
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T = O case reminder

T > 0 case

T > 0H = 0 case
BAE roots in low T T > 0H > 0 case

Mechanism of truncation of longer strings

Reconsider BAE

Observation

Suppose T' = —77 and m roots — oo then the BAE among finite roots ¢ is
identical to BAE with N, — m roots (magnetic sector) without H.

A& — iu + 1)§(Ek + i) 7(k + 1)
O(E + i(u+1))p(& — iu)G(Ex — 1)
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0 case reminder
> 0 case

T > 0H = 0 case
BAE roots in low T T > 0H > 0 case

This is one of the possible senarios, but it does happen.
an example of a 4-string — no string
n=1,H=5T=10 T=4 T=2

;; |
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0 case reminder
> 0 case

> 0H = 0 case
BAE roots in low T > 0H > 0 case

Free Fermion like complex rapidities
n=1,H=5T=1.1
1st 8th 22nd

43th 70th
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0 case reminder

> 0 case
T > 0H = 0 case
BAE roots in low T T > 0H > 0 case

conjecture

For H # 0, sufficiently low 7', roots and holes distribute as one of the
following 3 patterns depending in value of |H|.

H < Hy H, < H < H, H>H,
-2 2 of -2 2
\ . ' 0®%e ' 4
() )
eo® o... .0 0.
o® e o [¢]
GapI n.JT 00 :
%0 an * 000
LI P 0|0
nJ-1

The conjecture is consistent with
@ simple 1-body approximation on BAE
@ analysis on the higher level Bethe ansatz
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T = O case reminder
T > 0 case

T > 0H = 0 case
BAE roots in low T T > 0H > 0 case

conjecture
most important excitations at H < H, are: holes {z,} near ImA\ ~ 0 and
particles {y,} near SmA ~ —n

Ay () is (as always) represented by the product of the discrete and the
smooth part.
An(a) = Delz] Aclz]

De|z], Ae|z] are characterized by {z,}, {ya}, z(w) :=log %{W

dp z(N\)z
Delz] o D(walya) exp f 2mi fcl 2:1 tan(A (,u/j))
(1-

xHefﬁc #)(za) 1Ogan o H Lel=)(va)
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= 0 case reminder
> 0 case
> 0H = 0 case

T
T
T

BAE roots in low T T > 0H > 0 case

Ha#b sin(za — ) Ha;ﬁb sin(ya — yv)
[1.,sin(za — ys) sin(ys — za)
Le[A(w) = 2Cc[(w) - Cel#](w + in) — Celz](w — in)
_ fls) ds
Celflw) = f{c tan(w — s) 2mi
Good situation in comparison to massless case:
We perhaps do not have to sum all important contributions.
Now quantitative analysis is possible

D(zalya) =
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T = 0 case reminder

T 0 case

T 0H = 0O case
BAE roots in low T T > 0H > 0 case

summary and outlook

Done
@ identify the most important excitations at low T for H # 0.

@ Explicit expressions for longitudinal FF suitable for asymptotic analysis

Massless case H — 0 seems OK.

To do
@ Numerical analysis at finite 7.
@ Comparison (and detect deviation) from results from vertex operator
approach
@ Finite size case: scaling limit and comparison with bootstrap results.

thank you for your attention

J. Suzuki et al Correlations in massive phase



	Introduction
	Formulation
	QTM
	QISM

	Simple FF
	BAE roots in low T
	T=0 case reminder
	T>0 case
	T>0 H=0 case
	T>0 H>0 case


