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Two simple critical quantum integrable models

The XXZ spin-1/2 Heisenberg chain

HXXZ =
LX

m=1

˘
σx

mσ
x
m+1 + σy

mσ
y
m+1 + ∆(σz

mσ
z
m+1 − 1)

¯
− h

LX
m=1

σz
m

σx,y,z
m : local spin-1/2 operators (Pauli matrices) at site m

∆ : anisotropy parameter (−1 < ∆ < 1);

h : magnetic field (0 < h < hc)

The Quantum Non-Linear Schrödinger model (1D Bose gas)

HNLS =

Z L

0

n
∂xΨ†(x)∂xΨ(x) + cΨ†Ψ†ΨΨ− hΨ†Ψ

o
dx

Ψ(x),Ψ†(x) : canonical quantum Bose fields [Ψ(x),Ψ†(y)] = δ(x − y)

coupling constant c > 0 (repulsive regime)

chemical potential h > 0

periodic boundary conditions

in the thermodynamic limit L→ +∞ the spectrum is gapless



Form factor approach to correlation functions
Our goal is to study the large distance asymptotic behavior |xi − xj | → ∞ of
(T = 0) multipoint correlation functions in critical integrable models (such as
NLS, XXZ. . . ) using their form factor expansion:

〈
rY

j=1

Oj(xj) 〉 =
X

|ψ1〉,...,|ψr−1〉

〈ψg | O1(x1) |ψ1 〉

× 〈ψ1 | O2(x2) |ψ2 〉 . . . 〈ψr−1 | Or (xr )|ψg 〉

with Ok(x): local operator at position x

Main difficulty : form factors scale to zero in the large-size limit L→∞ for
critical models:

〈ψi | O(x) |ψj 〉 = L−θij e ix(Pi−Pj )A(ψi , ψj)

 Analyze the form factor series for large (but finite) system size L.

Hence we need

to describe states that will contribute to the leading behavior of the series
in the limits |xi − xj | → ∞ and L→∞ with |xi − xj | << L

to compute the corresponding form factors and their behavior in these
limits

to sum up the corresponding series



Outline of the talk

1 General setting

 the (contributing) spectrum of the model is of particle-hole type with
a finite Fermi zone [−q, q]

 the form factors admits a large-size behavior which has a particular
“discrete” form when particles and holes are in the vicinities of the
Fermi boundaries (i.e. the singular part of the f.f. is of Cauchy type)

2 Recall of the summation process for the 2-point case

Involves a particular combinatorial identity

 Large distance asymptotic behavior of static (T = 0) spin-spin
correlation functions (XXZ chain) 〈σα1 σβm〉 ∼

m→∞
?

 Long time/Large distance asymptotic behavior of dynamical
two-point functions (1D Bose gas) 〈O†(x , t)O(0, 0)〉 ∼

x,t→∞
t/x=const

?

 Behavior of dynamical response functions near the excitation
dispersion curves (1D Bose gas)

3 Generalization to (static) multipoint correlation functions

Involves a multidimensional generalization of the 2-point combinatorial
identity
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The particle-hole spectrum

Eigenstates parametrized by solutions of the logarithmic Bethe equations:

Lp0(µ`j ) +
NX

k=1

θ(µ`j − µ`k ) = 2π
“
`j −

N + 1

2

”
, j = 1, . . . ,N (`j ∈ Z)

Ground state |ψg 〉: N = N0, `j = j , j = 1, . . . ,N0

G.S. Bethe roots λj are real. In the thermodynamic limit, they densely fill
the Fermi zone [−q, q] with a density ρ(λ) solution of a linear integral eq.

“particle-hole” excitations: roots µ`j ∈ R corresponding to

`j = j for j ∈ {1, . . . ,N} \ {h1, . . . , hn} and `ha = pa /∈ {1, . . . ,N}
 associated particle rapidities µpa and hole rapidities µha

◦ ◦ ◦ ◦ • • • • • • • • • • ◦ ◦ ◦ ◦ Ground State

◦ ◦ • ◦ • • • ◦ • • ◦ • • • ◦ ◦ ◦ • Excited State

-�
1

Lρ - �
F
Lρ

↪→ Excited state roots µj infinitesimally shifted from G.S. roots λj , with a
shift function F (λ) solution of a linear integral eq.

We don’t consider complex solutions for XXZ (open problem, can
contribute for the dynamical correlation functions)



Large-size behavior of particle-hole form factors

singularities of the form factors contained in Cauchy determinant
(can be extracted from the determinant representation of form factors):

〈ψ({µ})| O(0) |ψ({λ})〉 = detN
1

λa − µb
× Smooth part

 Large L behavior of form factors:

|〈ψ({µ})| O(0) |ψg 〉|2 ∼
L→∞

L−θ S({µp},{µh}) D({p},{h})

S - smooth part (model dependent, explicit expression is rather
complicated)

It depends continuously on the particle/hole rapidities µpj and µhj

D - discrete part (universal and rather simple)

It depends on the set of integers pa and ha labeling the particles and holes

 in the vicinity of the Fermi boundaries ±q, a microscopic (of order
1/L) deviation of a particle (or hole) rapidity leads to a macroscopic
change in the expression of D
the exponent θ can be written in terms of the shift function

It is solely the discrete part D (together with the values of θ for the
various form factors) that drives the asymptotic behavior, while the
smooth part S enters only the corresponding amplitude.
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Sum over particle-hole form factors

〈O†(x , t)O(0, 0)〉 = lim
L→∞

X
particles p

holes h

L−θ e ixPex−itEex S({µp},{µh}) D({p},{h})

The phase factor is additive w.r.t. particles and holes:

Pex −
t

x
Eex −→

L→∞

nX
a=1

[p(µpa )− p(µha )]− t

x
[ε(µpa )− ε(µha )]

p: dressed momentum; ε: dressed energy

Equal time correlation functions: In the large distance limit x →∞, the
oscillatory character of the form factor sum localizes the particle and hole
rapidities, in the absence of any other saddle point of the oscillating exponent,
around the Fermi boundaries ±q.

↪→ (infinite) sum over critical states

Time-dependent correlation functions: asymptotic regime x , t → +∞ and t/x
fixed.

the oscillating phase xp(λ)− tε(λ) has a unique simple saddle-point λ0:

xp′(λ0)− tε′(λ0) = 0

 the particle and hole rapidities localize around the saddle point and around
the Fermi boundaries ±q

↪→ sum over quasi-critical states

↪→ these restricted sums can be exactly computed thanks to a purely combinatorial
multiple sum identity



Details of the computation for (static) 2-point functions
For equal time correlation functions, we have to sum over critical form factors
corresponding to excited states with particles and holes on the Fermi
boundaries ±q:

critical excited states of class ` : contain n±p particles, resp. n±h holes,
with rapidities equal to ±q such that

n+
p − n+

h = n−h − n−p = `, ` ∈ Z.

Define pj = p+
j + N if µpj = q, pj = 1− p−j if µpj = −q

hj = N + 1− h+
j if µhj = q, hj = h−j if µhj = −q

inside a given class ` of critical form factors:

 smooth parts S({µp}; {µh})[F ] are all the same

 critical exponents θ` are all the same

 phase factors Pex and finite discrete parts depend on the particular
state we consider (they are expressed in terms of particle/hole integers
p±j , h

±
j around the Fermi zone)

↪→ all critical form factors inside a same class ` can be expressed in terms
of the simplest form factor of the class (the `-shifted state |ψ` 〉 with
integers `j = j + `) by just taking in consideration the modification of the
discrete part



Details of the computation for (static) 2-point functions

We sum over all classes of critical form factors:

〈O†(x)O(0)〉cr = lim
L→∞

∞X
`=−∞

L−θ` e2ix`k
F |F` |

2 f`(F
+
` ,w) f`(F

−
` ,w)

˛̨̨
w=exp( 2πix

L )

|F` |
2 is the special renormalized form factor of class ` associated to the

`-shifted state |ψ` 〉 with integers `j = j + ` (`-Umklapp excited state,
with ` particles and ` holes located on the opposite ends of the Fermi
zone ±q): ˛̨

F`
˛̨2

= lim
L→+∞

n
Lθ`
˛̨
〈ψ` |O|ψg 〉

˛̨2o
The sum over integers on the right and left Fermi boundaries factorizes in
two decoupled sums f`(F

+
` ,w) and f`(F

−
` ,w):

f`(ν,w) ≡
∞X

np ,nh=0
np−nh=`

X
p1<···<pnp

pa∈N∗

X
h1<···<hnh

ha∈N∗

w
Pnp

j=1(pj−1)+
Pnh

k=1
hk

“ sinπν

π

”2nh

×
Qnp

j>k(pj − pk)2Qnh
j>k(hj − hk)2Qnp

j=1

Qnh
k=1(pj + hk − 1)2

npY
j=1

Γ2(pj + ν)

Γ2(pj)

nhY
k=1

Γ2(hk − ν)

Γ2(hk)



Details of the computation for (static) 2-point functions

Main identity

f`(ν,w) = w `(`−1)/2 G 2(1 + `+ ν)

G 2(1 + ν)
(1− w)−(ν+`)2

where G is the Barnes G-function: G(z + 1) = Γ(z)G(z)

and f`(ν,w) ≡
∞X

np ,nh=0
np−nh=`

X
p1<···<pnp

pa∈N∗

X
h1<···<hnh

ha∈N∗

w
Pnp

j=1(pj−1)+
Pnh

k=1
hk

“ sinπν

π

”2nh

×
Qnp

j>k(pj − pk)2Qnh
j>k(hj − hk)2Qnp

j=1

Qnh
k=1(pj + hk − 1)2

npY
j=1

Γ2(pj + ν)

Γ2(pj)

nhY
k=1

Γ2(hk − ν)

Γ2(hk)

` = 0 case Z-measures on partitions (Kerov-Vershik,Borodin-Olshanski,
Okounkov);

generalization to ` 6= 0 and alternative proof at ` = 0 (’11, KKMST ).



Results for the (static) 2-point functions

The thermodynamic limit becomes easy to handle leading to the asymptotic
results: ˙

O(x)O†(0)
¸

=
X
`∈Z

ei2x`kF · |F`|2

(−ix)∆`;+ · (ix)∆`;−
(1 + o(1)) .

 leading asymptotic behavior of each oscillating harmonic

Structure of the asymptotics

Asymptotics indexed by Umklapp excitations ` ;

the amplitudes |F`|2 are model-dependent but have a universal
interpretation ;

the critical exponent ∆`;+ = (F +
` + `)2 and ∆`;− = (F−` + `)2 are

given in terms of the values F±` of the shift function on the left and right
Fermi boundaries



Results for the XXZ chain

leading asymptotic terms for the 2-point functions

〈σz
1σ

z
m+1〉cr = (2D − 1)2 − 2Z2

π2m2
+ 2

∞X
`=1

|F z
` |2

cos(2m`kF )

(2πm)2`2Z2

〈σ+
1 σ
−
m+1〉cr =

(−1)m

(2πm)
1

2Z2

∞X
`=−∞

(−1)` |F+
`
|2 e2im` k

F

(2πm)2`2Z2

Z = Z(q) where Z(λ) is the dressed charge

Z(λ) +

Z q

−q

dµ

2π
K(λ− µ) Z(µ) = 1

D is the average density D =

Z q

−q

ρ(µ)dµ =
1− 〈σz〉

2
=

kF

π˛̨
F z
`

˛̨2
= lim

L→∞
L2`2Z2

|〈ψg |σz
1 |ψ`〉|2 ,

|ψ` 〉 being the `-shifted ground state

|F+
`
|2 = lim

L→∞
L

(2`2Z2+ 1
2Z2 ) ˛̨〈ψg |σ+

1 |ψ′`〉
˛̨2

,

|ψ′` 〉 being the `-shifted ground state in the N0 + 1 sector



The time-dependent case in NLS model
Example: Density-density function 〈ψg | j(x , t) j(0, 0) |ψg 〉, j = ψ†ψ when
x , t → +∞ (x/t fixed)

Let λ0 be the (unique) saddle-point of p(λ)− t
x
ε(λ)

space-like regime (|x/t| > vF i.e. λ0 /∈ [−q, q]):

〈j(x , t) j(0, 0)〉 =
“pF

π

”2

− Z
2

2π2

x2 + t2v 2
Fˆ

x2 − t2v 2
F

˜2 +
2 cos(2xpF ) ·

˛̨
Fq
−q

˛̨2
[−i(x − vF t)]Z2 [i(x + vF t)]Z2

+

√
2π e−i π

4 p′(λ0)

[tε′′(λ0)− xp′′(λ0)]1/2

eix[p(λ0)−pF ]−i tε(λ0) ·
˛̨
Fλ0

q

˛̨2
[−i(x − vF t)][F

λ0
q (q)−1]2 [i(x + vF t)]F

λ0
q (−q)2

+

√
2π e−i π

4 p′(λ0)

[tε′′(λ0)− xp′′(λ0)]1/2

eix[p(λ0)+pF ]−i tε(λ0) ·
˛̨
Fλ0
−q

˛̨2
[−i(x − vF t)]F

λ0
−q(q)2

[i(x + vF t)][F
λ0
−q(−q)+1]2

+ . . .

pF = p(q): Fermi momentum; vF = ε′(q)
p′(q)

: Fermi velocity

Z = Z(q) where Z(λ) is the dressed charge (solution of an integral
equation)

F
µp
µh (λ) (resp. Fµp

µh ): shift function (resp. properly normalized
form factor of density ) between the ground state and an excited state
with one particle at µp and one hole at µh

time-like regime (|x/t| < vF i.e. λ0 ∈ ]− q, q[): Similar type of formula



Singularities of dynamical response functions in NLS model

Example: Dynamical structure factor

S(k, ω) =

∞Z
−∞

dx

∞Z
−∞

dt e i(ωt−kx)〈 j(x , t) j(0, 0) 〉

 probability to excite the ground state with momentum and energy transfer
(k, ω), can be experimentally measured.

Numerical computations
(Calabrese, Caux 06)

DSF exhibit power-law singularities
along the one-particle (upper) and
one-hole (lower) dispersion curves

Edge exponents and amplitudes can be computed for both thresholds from the
analytic study of the form factor series:

S(k, ω) =
X
|ψj 〉

δ(ω − Eex) δ(k − Pex) |〈ψj | j(0, 0) |ψg 〉|2



Example: DSF around the hole threshold
Let kh = pF − p(λ) (resp. εh = −ε(λ)) be the momentum (resp. energy) of the
excitation corresponding a particle at q and a hole at λ ∈ ]− q, q[

We are interested in the δω → 0 behavior of Dynamical Structure Factor when
k = kh and ω = εh + δω

 one can restrict the sum over form factors to excited states with

one hole in a vicinity of λ + one particle at q

+ an arbitrary number of additional particle-hole excitations with
rapidities accumulating on the Fermi boundaries ±q (with zero total
momentum and energy)

 same kind of summation identity as in the previous case

S(k, ω)hole = H(δω)

˛̨
Fq
λ

˛̨2
Γ(α+ + α−) (v − vF )α+ (v + vF )α−

„
δω

2π

«α++α−−1

v = ε′(λ)
p′(λ)

: sound velocity; vF = ε′(q)
p′(q)

: Fermi velocity

Fq
λ : properly normalized form factor of density between the ground state and

an excited state with one particle at q and one hole at λ

the exponents α± are given in terms of the corresponding shift functions

 confirms predictions obtains from the non-linear Luttinger liquid approach
(Imambekov & Glazman 08)
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Multipoint correlation functions

We consider the r -point function

C
`
xr ; or

´
= 〈Ψg |O1(x1) . . .Or (xr )|Ψg 〉

where local operators Oa(x) connect states with N and N + oa quasi-particles

 large-distance asymptotic behavior in the regime 1 << |xl − xk | (l 6= k) and
xk << L (k = 1, . . . , r) ?

Form factor expansion:

multiple sum over intermediate normalized states |Ψ
`
I(s)

n

´
〉, s = 1, . . . r − 1,

labelled by sets of integers I(s)
n =

˘
{p(s)

a }n1 ; {h(s)
a }n1

¯
corresponding to particles

and holes excitations :

C(xr ; or ) =
r−1Y
s=1

 X
{I(s)

n(s)
}

ff r−1Y
s=1


e

i(xs+1−xs ) ∆P(I(s)

n(s)
)
ff

×
rY

s=1

〈Ψ
`
I(s−1)

m

´
|Os(0)|Ψ

`
I(s)

n

´
〉



Large-L expansion of form factors connecting critical states

〈Ψ
`
I(s−1)

m

´
|Os(0)|Ψ

`
I(s)

n

´
〉 ∼

L→∞
L−ρs (ν+

s )−ρs (ν−s ) FOs (`s−1, `s) ·C (`s−1;`s )`ν+
s , ν

−
s

´
× f (+)

h
J (s−1)

mp;+;mh;+
;J (s)

np;+;nh;+
| ν+

s

i
· f (−)

h
J (s−1)

mp;−;mh;− ;J (s)
np;−;nh;− | ν

−
s

i
.

the quantity FOs (`s−1, `s) represents the properly normalized form factor
of the operator Os taken between fundamental representatives of the `s
and `s−1 critical classes:

FOs (`s−1, `s) = lim
L→+∞


Lρs (ν+

s )+ρs (ν−s )〈Ψ`s−1 |Os(0)|Ψ`s 〉
ff

C (`s−1;`s ) is a normalization constant (written in terms of Barnes
G-function)

ν+
s = νs(q)− os and ν−s = νs(−q) are given in terms of the values that

the relative shift function νs(λ) = Fs−1(λ)− Fs(λ) between the `s , `s−1

critical states takes on the right/left endpoints of the Fermi zone



f (±)
h
J (s−1)

mp;±;mh;± ;J (s)
np;±;nh;± | ν

±
s

i
correspond to the contributions of the

excitations on the right/left Fermi boundary of the model (discrete part)

 depend on the sets of integers J (s−1)
mp;±;mh;± and J (s)

np;±;nh;± parametrizing
the excitations on the right/left boundary for the s − 1 and s excited
states.

f (+)
h
J (s−1)

np ;nh
;J (s)

nk ;nt
| ν
i

= (−1)nt

„
sin[πν]

π

«nt +nh

$
“
Jnp ;nh ;Jnk ;nt | ν

”
×
Qnp

a<b(pa − pb)
Qnh

a<b(ha − hb)Qnp

a=1

Qnh
b=1(pa + hb − 1)

·
Qnk

a<b(ka − kb)
Qnt

a<b(ta − tb)Qnk
a=1

Qnt
b=1(ka + tb − 1)

× Γ

„
{pa + ν} {ha − ν} {ka − ν} {ta + ν}
{pa} {ha} {ka} {ta}

«
,

with

$
“
Jnp ;nh ;Jnk ;nt | ν

”
=

nhY
a=1

(Qnk
b=1

`
1− kb − ha + ν

´Qnt
b=1

`
tb − ha + ν

´ ) npY
a=1

(Qnt
b=1

`
pa + tb + ν − 1

´Qnk
b=1

`
pa − kb + ν

´ )
.

 This $ term couples the right and left states particles and holes integers
(not present if one of them is the ground state)
 coupling of previous combinatorial sums!



Summation of the large-L form factor series and
asymptotic behavior of multipoint correlation functions

 we have to sum up multiple sums of the previous type (obtained for 2-point
functions) however highly coupled between themselves by the factors $

It is still possible to do it !
The corresponding identity follows from the identification of two possible
representations for the large-size asymptotic behavior of a particular Toeplitz
determinant with Fisher-Hartwig singularities

 Taking the thermodynamic limit we arrive at the following r-point correlation
function asymptotic behavior :

C
`
xr ; or

´
=

X
κr∈ZrP
κa=0

rY
s=1


e2ikFκs xs

ff
·

rY
s=1

FOs (`s−1, `s)

×
rY

b>a

(ˆ
i(xb − xa)

˜θ−
b

(κb)θ−a (κa) ·
ˆ
− i(xb − xa)

˜θ+
b

(κb)θ+
a (κa)

)
.

with θ±b (κb) = ν±b + κb and κs = `s−1 − `s .



Four-point function. XXZ chain

Consider a four point function:

Cxxxx = 〈Ψg |σx
m1
σx

m2
σx

m3
σx

m4
|Ψg 〉.

The leading term confirms the CFT prediction:

Cxxxx = 2
˛̨
F+

0

˛̨4 ·( ˛̨̨̨ (m2 −m1) · (m4 −m3)

(m3 −m1) · (m4 −m1) · (m3 −m2) · (m4 −m2)

˛̨̨̨ 1
2Z2

+ (2↔ 3) + (2↔ 4)

)
+ . . . .



Conclusion and perspectives

Results

explicit leading asymptotic behavior of static 2-point functions (XXZ), of
dynamical 2-point functions (NLS), of static n-point functions +
singularities of dynamical response functions (NLS)

 reproduces all the predictions (for XXZ and Lieb-Liniger models) from
the CFT, Luttinger liquid approach, non-linear Luttinger liquid approach

+ goes further (time-dependent case, correlation amplitudes. . . )

The method relies on simple hypothesis (→ easy generalization to other
models):

Finite Fermi zone + particle-hole spectrum
Singularities of the form factors contained in Cauchy determinant
(kinematic factor, quite general)

Open problems

Contribution from the bound states (→ time-dependent case for XXZ) ?

Explicit expressions for the amplitudes and limit h = 0 ?

multipoint time-dependent functions ?


